7,408 research outputs found
Predictors of Successful Decannulation Using a Tracheostomy Retainer in Patients with Prolonged Weaning and Persisting Respiratory Failure
Background: For percutaneously tracheostomized patients with prolonged weaning and persisting respiratory failure, the adequate time point for safe decannulation and switch to noninvasive ventilation is an important clinical issue. Objectives: We aimed to evaluate the usefulness of a tracheostomy retainer (TR) and the predictors of successful decannulation. Methods: We studied 166 of 384 patients with prolonged weaning in whom a TR was inserted into a tracheostoma. Patients were analyzed with regard to successful decannulation and characterized by blood gas values, the duration of previous spontaneous breathing, Simplified Acute Physiology Score (SAPS) and laboratory parameters. Results: In 47 patients (28.3%) recannulation was necessary, mostly due to respiratory decompensation and aspiration. Overall, 80.6% of the patients could be liberated from a tracheostomy with the help of a TR. The need for recannulation was associated with a shorter duration of spontaneous breathing within the last 24/48 h (p < 0.01 each), lower arterial oxygen tension (p = 0.025), greater age (p = 0.025), and a higher creatinine level (p = 0.003) and SAPS (p < 0.001). The risk for recannulation was 9.5% when patients breathed spontaneously for 19-24 h within the 24 h prior to decannulation, but 75.0% when patients breathed for only 0-6 h without ventilatory support (p < 0.001). According to ROC analysis, the SAPS best predicted successful decannulation {[}AUC 0.725 (95% CI: 0.634-0.815), p < 0.001]. Recannulated patients had longer durations of intubation (p = 0.046), tracheostomy (p = 0.003) and hospital stay (p < 0.001). Conclusion: In percutaneously tracheostomized patients with prolonged weaning, the use of a TR seems to facilitate and improve the weaning process considerably. The duration of spontaneous breathing prior to decannulation, age and oxygenation describe the risk for recannulation in these patients. Copyright (c) 2012 S. Karger AG, Base
Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game
We study the variant of the stable marriage problem in which the preferences
of the agents are allowed to include indifferences. We present a mechanism for
producing Pareto-stable matchings in stable marriage markets with indifferences
that is group strategyproof for one side of the market. Our key technique
involves modeling the stable marriage market as a generalized assignment game.
We also show that our mechanism can be implemented efficiently. These results
can be extended to the college admissions problem with indifferences
Detecting the influence of initial pioneers on succession at deep-sea vents
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50015, doi:10.1371/journal.pone.0050015.Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50′N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed vents.The authors received funding from National Science Foundation grant OCE-0424953, WHOI Deep Ocean Exploration Institute, WHOI Summer Student Fellow program, Woods Hole Partnership in Education Program, IFREMER and CNRS, Fondation TOTAL Chair Extreme Marine Environment, Biodiversity and Global change
Mapping Geographic Areas of High and Low Drug Adherence in Patients Prescribed Continuing Treatment for Acute Coronary Syndrome After Discharge
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90283/1/phco.31.10.927.pd
Experimental observation of nonlinear Thomson scattering
A century ago, J. J. Thomson showed that the scattering of low-intensity
light by electrons was a linear process (i.e., the scattered light frequency
was identical to that of the incident light) and that light's magnetic field
played no role. Today, with the recent invention of ultra-high-peak-power
lasers it is now possible to create a sufficient photon density to study
Thomson scattering in the relativistic regime. With increasing light intensity,
electrons quiver during the scattering process with increasing velocity,
approaching the speed of light when the laser intensity approaches 10^18
W/cm^2. In this limit, the effect of light's magnetic field on electron motion
should become comparable to that of its electric field, and the electron mass
should increase because of the relativistic correction. Consequently, electrons
in such high fields are predicted to quiver nonlinearly, moving in figure-eight
patterns, rather than in straight lines, and thus to radiate photons at
harmonics of the frequency of the incident laser light, with each harmonic
having its own unique angular distribution. In this letter, we report the first
ever direct experimental confirmation of these predictions, a topic that has
previously been referred to as nonlinear Thomson scattering. Extension of these
results to coherent relativistic harmonic generation may eventually lead to
novel table-top x-ray sources.Comment: including 4 figure
Correlated electron metal properties of the honeycomb ruthenate Na₂RuO₃
We report the synthesis and characterization of polycrystalline Na_{2}RuO_{3}, a layered material in which the Ru^{4+} (4d^{4} configuration) form a honeycomb lattice. The optimal synthesis condition was found to produce a nearly ordered Na_{2}RuO_{3} (C2/c phase), as assessed from the refinement of the time-of-flight neutron powder diffraction. Magnetic susceptibility measurements reveal a large temperature-independent Pauli paramagnetism [x_{0} ~ 1.42(2) x 10^{-3} emu/mol Oe] with no evidence of magnetic ordering down to 1.5 K, and with an absence of dynamic magnetic correlations, as evidenced by neutron scattering spectroscopy. The intrinsic susceptibility (x_{0}) together with the Sommerfeld coefficient of gamma = 11.7(2) mJ/Ru mol K^{2} estimated from heat capacity measurements gives an enhanced Wilson ratio of R_{w} ≈ 8.9(1), suggesting that magnetic correlations may be present in this material. While transport measurements on pressed pellets show nonmetallic behavior, photoemission spectroscopy indicates a small but finite density of states at the Fermi energy, suggesting that the bulk material is metallic. Except for resistivity measurements, which may have been compromised by near-surface and interface effects, all other probes indicate that Na_{2}RuO_{3} is a moderately correlated electron metal. Our results thus stand in contrast to earlier reports that Na_{2}RuO_{3} is an antiferromagnetic insulator at low temperatures
Hsp90 governs dispersion and drug resistance of fungal biofilms
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
The Statistical Mechanics of Horizons and Black Hole Thermodynamics
Although we know that black holes are characterized by a temperature and an
entropy, we do not yet have a satisfactory microscopic ``statistical
mechanical'' explanation for black hole thermodynamics. I describe a new
approach that attributes the thermodynamic properties to ``would-be gauge''
degrees of freedom that become dynamical on the horizon. For the
(2+1)-dimensional black hole, this approach gives the correct entropy. (Talk
given at the Pacific Conference on Gravitation and Cosmology, Seoul, February
1996.)Comment: 11 pages, LaTe
Optimized Planar Penning Traps for Quantum Information Studies
A one-electron qubit would offer a new option for quantum information
science, including the possibility of extremely long coherence times.
One-quantum cyclotron transitions and spin flips have been observed for a
single electron in a cylindrical Penning trap. However, an electron suspended
in a planar Penning trap is a more promising building block for the array of
coupled qubits needed for quantum information studies. The optimized design
configurations identified here promise to make it possible to realize the
elusive goal of one trapped electron in a planar Penning trap for the first
time - a substantial step toward a one-electron qubit
- …