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Abstract
In this paper, we examine some properties of chain-complete posets and introduce
the concept of universally inductive posets. By applying these properties, we provide
several extensions of Abian-Brown fixed point theorem from single-valued mappings
to set-valued mappings on chain-complete posets and on compact subsets of
partially ordered topological spaces. As applications of these fixed point theorems, we
explore the existence of generalized Nash equilibrium for strategic games with
partially ordered preferences.
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1 Introduction
In game theory, the players (or the decision makers) usually have normal preferences (i.e.
completely ordered preferences) on the outcomes of the games. More precisely, in any
such game, for any given pair of outcomes, the players can clearly show their preference
one to other one, or can identify both outcomes as equally desirable (indifferent between
these two outcomes). That is, the utility functions for the players on the outcomes in such
games have ranges in totally ordered sets, which can be represented by real valued func-
tions (payoff functions).
In contrast to games with normal preferences, in the real world, there are some games

that the utilities for the players on the outcomes are not totally ordered (maybe partially
ordered), in which, there are some pairs of distinct outcomes which cannot be identified
the preferences between them by the players. We provide an example below to more pre-
cisely illustrate this argument (for more details, see []).

1.1 The extended prisoner’s dilemma
Two suspects, designated Suspect  and Suspect , are held in separate cells without any
means of communicating with each other. There are two crimes (I and II) for which these
suspects are being held. There is enough evidence to convict each of them of minor of-
fenses related to crimes I and II, but not enough evidence to convict either of them of the
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principal crimes I or II unless one of them acts as an informant against the other (‘finks’)
for crime I or II.
If they both stay quiet for both crime I and crime II, then each will be convicted of the

minor offenses for both crime I and crime II, and each will spend one year in prison for
crime I and will be fined $ for crime II. If only one of them finks for crime I and they
both stay quiet for crime II, then the informant will not be charged for crime I but will be
fined $ for crime II, and the informant will testify against the other for crime I, who will
be convicted of the principal offense for crime I resulting in a three-year prison sentence
and be fined $ for crime II. If they both stay quiet for crime I and only one of them finks
for crime II, then the informant will not be charged for crime II but will spend one year
in prison for crime I, and the informant will testify against the other for crime II, who will
be convicted of the principal offense for crime II resulting in a $ fine and be sentenced
to two years in prison for crime I. If they both fink for both crimes I and II, then each will
spend two years in prison for crime I and be fined $ for crime II.
Every suspect has the following four possible strategies:

QQ, QF, FQ, FF,

where the first letter represents the action for crime I and the second letter represents the
action for crime II. Then the possible outcomes (payoffs) for this game can be described
by the following table, where Suspect  plays this game as the row player and Suspect 
plays this game as the column player. Then this game has the following utilities matrix:

QQ QF FQ FF
QQ (–,–), (–,–) (–,–), (–, ) (–,–), (,–) (–,–), (, )
QF (–, ), (–,–) (–,–), (–,–) (–,–), (–,–) (–,–), (–,–)
FQ (,–), (–,–) (–,–), (–,–) (–,–), (–,–) (–,–), (–,–)
FF (, ), (–,–) (–,–), (–,–) (–,–), (–,–) (–,–), (–,–)

In every entry of the above matrix table, the first point is the outcome for Suspect  and
the second point is for Suspect . At each point, the absolute value of the first coordinate
equals the number of years that the suspect will spend in prison for crime I and the abso-
lute value of the second coordinate equals the number of dollars the suspect is fined for
crime II.
If we assume that, for every suspect, the number of years in prison for crime I and the

number of dollars fined for crime II are not substitutable, and then the utilities of the two
players are in the -dimensional Euclidean spaceR, which is endowedwith the coordinate
ordering relation � on R.
Let P, P be the utility functions (payoffs) of Suspect  and Suspect , respectively. So

the preferences of every suspect are not totally ordered. The utility functions P and P

both take values in (R;�). From the above table, we have

P(QQ,QQ) = (–,–), P(FQ,FQ) = (–,–), and P(QF, FQ) = (–,–).

It implies

P(QQ,QQ)� P(FQ,FQ) and P(FQ,FQ) �� P(QF, FQ).

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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Then we see that Suspect  prefers strategic profile (action) (FQ,QQ) to (QQ,QQ), and
he prefers strategic profile (QQ,QQ) to (FQ,FQ). But Suspect  does not have any prefer-
ences between strategic profiles (QF, FQ) and (FQ,FQ), at which, the suspect’s utilities are
(–,–) and (–,–), respectively; that is, the utilities for Suspect  on strategic profiles
(QF, FQ) and (FQ,FQ) are not comparable.
In this game, the preferences of the two players are not normal; and therefore, we can-

not define the ordinary Nash equilibrium for this game. In [–], some strategic games
with nonnormal preferences have been studied and the concept of Nash equilibrium with
normal preferences has been extended tomore general Nash equilibriumwith nonnormal
preferences.
In the ordinary game theory, fixed point theorems play important roles to prove the ex-

istence of Nash equilibrium for strategic games, where the underlying spaces are equipped
with topological structures. So in such games, the considered payoff functions are as-
sumed to satisfy some continuity conditions. In contrast to, if the underlying spaces in
a game are posets endowed with a partial order, which may not equipped with a topolog-
ical structure, then the ordinal techniques for proving the existence of Nash equilibrium
are not applicable. To overcome this difficulty, in this paper, we develop more fixed point
theorems in posets with set-valued mappings, which is applied to solving the Nash equi-
librium problems for strategic games with partially ordered preferences.

2 Partially ordered topological spaces
In this section, we recall some properties of partially ordered topological spaces. The
notations used in this section are derived from Aliprantis and Burkinshaw [], Carl and
Heikkilä [], Debreu [], Dunford and Schwartz [], Li [], Ok [], and Ward [].
Let (P,�) be a poset (i.e. a partially ordered set) and A a nonempty subset of P. We say

that A is
. inductive if every chain in A has an upper bound in A;
. chain complete if every chain C in A possess its supremum, denoted by ∨C, in A.

A real vector space X endowed with a partial order � is called a partially ordered vector
space, which is written as (X,�) (it is a poset), if the following (order-linearity) properties
hold:
. x� y implies x + z � y + z, for all x, y, z ∈ X .
. x� y implies αx� αy, for all x, y ∈ X and α ≥ .

In this definition, in the underlying vector space, there is only algebraic structure endowed
with a partial order �, on which there is no topological structure equipped.
Let (P,�) be a poset. For any z,w ∈ P, we denote the following �-intervals:

[z) = {x ∈ P : x � z}, (w] = {x ∈ P : x	 w} and

[z,w] = [z)∩ (w] = {x ∈ P : z 	 x 	 w}.

Let (X,�) be a poset equipped with a topology τ (it is also a topological space). The topol-
ogy τ is called a natural topology on (X,�) with respect to the partial order �, whenever,
for every z ∈ P, the �-intervals [z) and (z] are all τ -closed.
A poset (X,�) equipped with a natural topology τ on X is called a partially ordered

topological space; and it is denoted by (X, τ ,�).

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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A partially ordered topological vector space is both a partially ordered topological space
and a partially ordered vector space.
We say that a Banach space endowed with a partial order is a partially ordered Banach

space if it is both a partially ordered vector space and a partially ordered topological space
with respect to the norm topology.

Theorem . Let (B,‖ · ‖) be a Banach space with the norm ‖ · ‖. Let � be a partial order
on B satisfying that (B,�) is a partially ordered vector space. Let ω be the weak topology on
B with respect to the norm ‖ · ‖.Then the norm topology ‖ · ‖ on B is a natural topology with
respect to the partial order �, if and only if the weak topology ω on B is a natural topology
with respect to �.

Proof For every x ∈ B, since (B,�) is a partially ordered vector space, it yields that the �-
intervals [x) and (x] are convex subsets of B. Then this theorem immediately follows from
the fact that every convex subset of a Banach space is closed in the norm topology if and
only if it is closed in the weak topology (see Theorem .. in Takahashi []). �

Lemma. (Ok []) Let (X,d,�) be a partially ordered compactmetric space.Then (X,�)
is a chain-complete poset.

Next, we extend Lemma . from partially ordered compact metric space to compact
subsets of partially ordered topological spaces.

Theorem. Every nonempty compact subset of a partially orderedHausdorff topological
space is chain complete.

Proof Let (X, τ ,�) be a partially ordered Hausdorff topological space with natural topol-
ogy τ . Let D be a nonempty compact subset of X. Pick an arbitrary chain C in D. Let cl(C)
denote the τ -closure of C. Since D is compact, so cl(C) ⊆ D; and cl(C) is also a compact
subset of X. At first, we show that cl(C) is also a chain in D. To this end, take any arbitrary
pair of elements x, y ∈ cl(C). Then there are sequences {xn} and {yn} in C such that xn → x
and yn → y, as n → ∞. Since C is a totally ordered subset of P, then xn 	 yn or yn 	 xn
holds for every n = , , , . . . . Hence there must be subsequences of {xn} and {yn}, without
loss of generality, assuming itself, such that xn 	 yn holds for every n = , , , . . . .
We claim that any sequence {zn} in a totally ordered set C contains a totally ordered

subsequence. In fact, we define two sets of positive integers below:

L = {n : there are infinitely manym such that zm 	 zn}

and

M = {n : there are infinitely manym such that zm � zn}.

It is clear that at least one of the L and M must be infinite. If L is infinite, then we can
select an order decreasing subsequence (it is totally ordered) of {xn}; and if M is infinite,
then we can select an order increasing subsequence (it is also totally ordered) of {xn}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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So, since {xn} and {yn} are sequences in the chain C, we can select order monotonic
subsequences from {xn} and {yn}, respectively. Without loss of generality, we assume that
{xn} and {yn} are both sub-chains of the chain C; that is, xn↑ (order increasing) and yn↑
(similarly, we can prove the result for the cases xn↑ and yn↓ (order decreasing), or, xn↓
and yn↓).
Then from the assumption that xn 	 yn holds for every n = , , , . . . , for every fixed

positive integer n, we have ym � xn, if m ≥ n. For the given fixed positive integer n, the
following �-interval:

[xn)∩D = {x ∈D : x � xn} = {x ∈ X : x � xn} ∩D

is τ -closed (we assumed that the topology τ is a natural topology with respect to the en-
dowed partial order �). From ym → y, as m → ∞ and ym ∈ [xn)D, for m ≥ n, it implies
y ∈ [xn)D; that is

y� xn, for every fixed positive integer n = , , . . . .

That is, xn ∈ (y] ∩D, for n = , , . . . . Since (y] ∩D is τ -closed, from xn → x, as n → ∞, it
yields that x ∈ (y]∩D; that is, y� x. Hence cl(C) is also a chain in D.
Take any arbitrary chain {xα} in cl(C). Let cl({xα}) denote the τ -closure of {xα}. From

the above argument, we see that cl({xα}) is also a chain. It is clear that cl({xα}) ⊆ cl(C).
We show that {xα} has an upper bound in cl(C). To this end, it is sufficient to show that
cl({xα}) has a maximum element in cl({xα}) ⊆ cl(C). For every xβ ∈ cl({xα}), let

Dβ = {z ∈ X : z ≺ xβ or z �� xβ}. ()

Notice thatDβ is the complementary set of the order interval [xβ ) that is a τ -closed subset
of D; hence, Dβ is τ -open in X. Rest of the proof for {xα} has an upper bound in cl(C) is
divided into two cases below:
Case . The collection {Dβ : xβ ∈ cl({xα})} does not form an open covering of the set

cl({xα}), that is,

cl
({xα})� ⋃{

Dβ : xβ ∈ cl
({xα})}.

It implies that there is x ∈ cl({xα}) such that

x /∈ Dβ = {z ∈ X : z ≺ xβ or z �� xβ}, for every xβ ∈ cl
({xα}). ()

From (), it yields

x � xβ , for every xβ ∈ cl
({xα}).

Hence, x, which belongs to cl({xα}), is a maximum element of cl({xα}).
Case . The collection {Dβ : xβ ∈ cl({xα})} forms an open covering of the set cl({xα}),

that is,

cl
({xα}) ⊆

⋃{
Dβ : xβ ∈ cl

({xα})}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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Since cl({xα}) is a τ -closed subset of the compact subset D of the Hausdorff topological
space (X, τ ), then it is a τ -compact subspace of D. Hence there is a finite subset {Dj : j =
, , . . . ,m} of {Dβ : xβ ∈ cl({xα})} that covers cl({xα}), for some positive integer m, where
Dj is defined by () with an element xj ∈ cl({xα}). That is,

cl
({xα}) ⊆

⋃
{Dj : j = , , , . . . ,m}. ()

Since cl({xα}) is totally ordered, and {xj : j = , , , . . . ,m} ⊆ cl({xα}), there is a maximum
element of the finite subset {xj : j = , , , . . . ,m}. Without loss of generality, assuming that
xm is the maximum element of {xj : j = , , , . . . ,m}, that is,

xj 	 xm, for j = , , , . . . ,m. ()

For any given x ∈ cl({xα}), from (), there is j = , , , . . . ,m, such that x ∈ Dj; that is, x ≺ xj
or x �� xj. Since both x and xj are in cl({xα}) that is totally ordered, from (), we must have

x ≺ xj 	 xm, for some j = , , , . . . ,m.

Hence, this element xm ∈ cl({xα}) is the maximum element of cl({xα}) and xm ∈ cl({xα}) ⊆
cl(C).
Combing the above two cases, we find that every chain {xα} in cl(C) has an upper bound

in cl(C). Hence cl(C) is inductive.
FromZorn’s lemma, cl(C) has amaximal element. Since cl(C) is totally ordered, its max-

imal element must be unique that is its maximum element. We denote it by x∗. Since
C ⊆ cl(C), it implies that x∗ is an upper bound of the chain C in D. Next we claim

x∗ = ∨C. ()

To prove (), suppose that y ∈D is also an upper bound of C, that is, y � x, for every x ∈ C.
From x∗ ∈ cl(C), there exists a sequence {zn} ⊆ C such that

zn → x∗ as n→ ∞. ()

Since y is an upper bound of the chain C in D, and {zn} ⊆ C, it yields {zn} ⊆ (y]. From
the assumption that the topology τ is a natural topology with respect to the endowed
partial order �, (y] is τ -closed. Then () implies x∗ ∈ (y], that is, x∗ 	 y, which shows ().
It completes the proof of this theorem. �

Following the above theorems, we give some examples of partially ordered topological
vector spaces and chain complete subsets. At first, we consider some special partial or-
ders on vector spaces, which are induced by some closed cones in these spaces, which is
especially important in the applications to the vector variational analysis.
Let K be a nonempty subset of a vector space X. K is called a cone in X if it satisfies

K �= {}, aK ⊆ K , for any nonnegative number a and (–K)∩K = {}. An ordering relation
�K on X induced by a cone K in X is define thus: for any x, y ∈ X,

x �K y if and only if x – y ∈ K .

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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It follows that, for every x ∈ X, the �K -intervals are given by

[x) = x +K and (x] = x –K . ()

The following results are useful and well known, which can be easily proved by applying
(). We list it as a proposition.

Proposition . Let X be a vector space and let K be a cone in X.We have
. If K is convex, then the ordering relation �K on X induced by K is a partial order and

(X,�K ) is a partially ordered vector space;
. If (X, τ ) is a topological vector space and K is closed and convex, then (X, τ ,�K ) is a

partially ordered topological vector space;
. If (X,‖ · ‖) is a Banach space and K is closed and convex, then (X,‖ · ‖,�K ) is a

partially ordered Banach space with the norm topology; and (X,ω,�K ) is also a
partially ordered topological vector space with the weak topology ω.

Theorem . Let (X, τ ,�) be a partially ordered topological space. Let {xn} be an �-
increasing (�-decreasing) sequence (sequential chain) in X. If∨{xn} (∧{xn}) exists and {xn}
is convergent, then xn → ∨{xn} (∧{xn}), as n → ∞.

Proof For the case that {xn} is an �-increasing sequence, suppose that ∨{xn} exists and
that xn → x, as n → ∞, for some x ∈ X. Since τ is a natural topology with respect to
the partial order �, then the order interval (∨{xn}] is τ -closed. Hence we must have x ∈
(∨{xn}]. It implies

x 	 ∨{xn}. ()

We claim that xn 	 x, for all n. In fact, for every fixed m, from the fact that τ is a natural
topology with respect to the partial order � again, the order interval [xm) is τ -closed.
Since {xn} is an �-increasing sequence, then {xn : n ≥ m} ⊆ [xm). From the assumption
that xn → x, as n → ∞, it implies x ∈ [xm); that is, x � xm, for all m. Hence x is an upper
bound of {xn}. By (), it implies x = ∨{xn}. We obtain xn → ∨{xn}, as n → ∞. We can
similarly show this theorem for the case that {xn} is an �-decreasing sequence. �

The following corollaries immediately follow from Theorem ..

Corollary . Let (X,�) be a partially ordered reflexive Banach space. Then, for any
nonempty bounded norm closed and convex subset D of X, (D,�) is a chain complete poset.

Corollary . Let X be a reflexive Banach space and let K be a closed convex cone of X.
Let �K be the partial order on X induced by the closed cone K . Then, for any nonempty
bounded norm closed and convex subset D of X, (D,�K ) is a chain-complete poset.

3 Several fixed point theorems on partially ordered topological spaces
Let (X,�X) and (U ,�U ) be posets and let F : X → U\{∅} be a set-valued mapping. F is
said to be isotone or order-increasing upward whenever x 	X y in X implies that, for any
z ∈ F(x), there is a w ∈ F(y) such that z 	U w. F is said to be order-increasing downward

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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whenever if x 	X y in X implies that, for any w ∈ F(y), there is a z ∈ F(x) such that z 	U w.
If F is both of order-increasing upward and order-increasing downward, then F is said to
be order-increasing.
The order-increasing property of mappings plays important roles in the fixed point

theory on posets. In [], Li provided several fixed point theorems that are extensions of
Abian-Brown fixed point theorem from single-valued mappings to set-valued mappings
on posets, which is equipped with neither a topology structure, nor an algebraic structure.
In this section, we introduce the concept of universally inductive posets and improve the
results provided in [].

Definition . A nonempty subset A of a poset (P,�) is said to be universally inductive in
P whenever, any given chain {xα} ⊆ P satisfying that every element xβ ∈ {xα} has an upper
cover in A has an upper bound in A.

Lemma . Every inductive subset A in a chain complete poset such that A has finite num-
ber of maximal elements is universally inductive.

Proof See the proof of Theorem . in []. �

It is clear that every universally inductive poset is an inductive poset. Next we provide a
counter example of poset that is inductive, but not universally inductive.

Example . Let (R,�) denote the partially ordered topological space with the co-
ordinative partial order and the ordinal topology on the -Euclidean space R. Let A =
{(x,  – x) :  ≤ x < }. Then A is inductive, but not universally inductive.

Proof Clearly,A is not compact. Notice that every element ofA is a maximal element inA;
and therefore, A is inductive. Take a chain C = {(x,x) :  ≤ x < } in R. It is clear that, for
every (x,x) ∈ C, there is (x,  – x) ∈ A such that (x,x) 	 (x,  – x). But C does not have an
upper bound in A. Hence, A is not universally inductive. �

Theorem . Let (P,�) be a chain-complete poset and let F : P → P\{∅} be a set-valued
mapping. Assume F satisfies the following three conditions:

A F is order-increasing upward;
A′ (F(x),�) is universally inductive in P, for every x ∈ P;
A There is an element y in P with y	 v, for some v ∈ F(y).

Then F has a fixed point.

Proof Define a subset A of P as follows:

A =
{
x ∈ P : there is z ∈ F(x) such that x 	 z

}
.

From condition , y ∈ A; and therefore,A is a nonempty subset of P. At first, we show that,
for any x ∈ A, if z ∈ F(x) such that x 	 z, then z ∈ A. To this end, from x 	 z and z ∈ F(x),
applying condition A, it implies that there is u ∈ F(z) such that z 	 u. It follows that z ∈ A.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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Next, we show that A is inductive. For an arbitrary chain {xα} ⊆ A, since P is chain
complete, it follows that ∨{xα} exists. For every xβ ∈ {xα} ⊆ A, there is uβ ∈ F(xβ ) with
xβ 	 uβ . From xβ 	 ∨{xα} and condition A, there is wβ ∈ F(∨{xα}) such that

xβ 	 uβ 	 wβ , for every xβ ∈ {xα}. ()

By condition A′, F(∨{xα}) is universally inductive. From (), it implies that {xα} has an
upper bound in F(∨{xα}), say w ∈ F(∨{xα}). That is

xβ 	 w, for every xβ ∈ {xα}.

It yields ∨{xα} 	 w ∈ F(∨{xα}). It immediately follows that ∨{xα} ∈ A. Hence A is chain
complete; and therefore, A is an inductive subset of P.
Applying Zorn’s lemma, A has a maximal element x∗. The definition of A implies that

there is z ∈ F(x∗) such that x∗ 	 z. From the above proof, we obtain z ∈ A. Since x∗ is a
maximal element of A. Then we must have x∗ = z. Hence, x∗ is a fixed point of F . �

As consequences of Theorem . and Lemma ., we have the following results.

Theorem . (Theorems . []) Let (P,�) be a chain-complete poset and let F : P →
P\{∅} be a set-valued mapping satisfying the following three conditions:

A F is order-increasing upward;
A (F(x),�) is inductive with finite number of maximal elements, for every x ∈ P;
A there is an element y in P with y	 v, for some v ∈ F(y).

Then F has a fixed point.

In Theorems . and ., the underlying spaces are posets, which is just endowed with
a partial order; and it is equipped with neither a topological structure, nor an algebraic
structure. Therefore neither continuity, nor linearity for the consideredmappings in these
theorems is applied.
Next, we provide some examples of universally inductive sets and investigate somemore

practical conditions for set-valued mappings to have fixed point in partially ordered topo-
logical spaces, where the continuity condition is not applied to the considered mappings.

Lemma . Every nonempty compact subset of a partially ordered Hausdorff topological
space is universally inductive.

Proof Let (X, τ ,�) be a partially ordered Hausdorff topological space with natural topol-
ogy τ . Let A be a nonempty compact subset of (X, τ ,�). From Theorem ., (A,�) is a
chain complete subset of (X, τ ,�). Take an arbitrary chain {xα} ⊆ P satisfying that, for ev-
ery element xβ ∈ {xα}, there is an element yβ ∈ A with xβ 	 yβ ∈ A. Then from the fact
that τ is a natural topology with respect to the partial order � on X, it implies that the set
[xβ )∩A is a nonempty closed subset of A. From the totally ordered property of {xα}, it fol-
lows that the net {[xα)∩A} is also a totally ordered net in A with respect to the inclusion
order. Hence the intersection of any finite number of elements in {[xα)∩A} is nonempty.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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So the family of closed subsets {[xα)∩A} satisfies the finite intersection condition on the
compact set A. Then we have

⋂
α

(
[xα)

) ∩A =
⋂
α

(
[xα)∩A

) �=∅.

Every element in
⋂

α([xα)) ∩ A is an upper bound of the chain {xα} in A. It proves this
lemma. �

By applying Proposition ., as consequences of Theorem . and Lemma . to ordered
topological space, we obtain the following results.

Corollary . Let (X, τ ,�) be a partially ordered topological space and let C be a
nonempty compact subset of X. Let F : C → C\{∅} be a set-valued mapping. Assume
F satisfies the conditions A, A in Theorem . and the following condition:

A′′ F(x) is closed, for every x ∈ P.

Then F has a fixed point.

Proof From Theorem ., the poset (C,�) is chain-complete. By condition A′′, F(x) is a
closed subset of a compact set C, and then it is compact. From Lemma ., F(x) is uni-
versally inductive, for every x ∈ P. Then this corollary follows from Theorem . immedi-
ately. �

Corollary . Let (X,‖ · ‖,�) be a partially ordered reflexive Banach space and let C be
a nonempty bounded closed and convex subset of X. Let F : C → C\{∅} be a set-valued
mapping.Assume F satisfies conditionsA, A in Theorem . and the following condition:

A′′′ F(x) is closed and convex, for every x ∈ P.

Then F has a fixed point.

Proof Since C is a nonempty bounded closed and convex subset of the reflexive Banach
spaceX, it is aweakly compact subset of (X,ω,�). FromProposition ., it is also a partially
ordered vector space with respect to the weak topology ω on X. By Theorem ., (C,�) is
a chain complete poset. The condition A′′′ in this corollary implies that F(x) is a weakly
compact subset of the bounded closed and convex subset C, for every x ∈ P. Then this
corollary immediately follows from Lemma . and Theorem .. �

To finish this section, we make some remarks on the results provided in this section.

Remark . In contrast to the definition of universally inductive poset in Definition .,
we can consider reversed universally inductive posets, order-decreasing upward (down-
ward) set-valued mappings. Then we can explore some fixed point theorems similar to
Theorem . with respect to order-decreasing upward (downward) set-valued mappings
with values of reversed universally inductive posets.
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4 Generalized Nash equilibrium of strategic gamewith partially ordered
preferences

In this section, we study some strategic and noncooperative games, in which the utilities of
the players are not totally ordered; that is, the players do not have the normal preferences
on the outcomes of this game, which is called a nonmonetized strategic game in this paper.
In [, ] and [, ], such games are called nonmonetized noncooperative games. The word
‘nonmonetized’ refers that the preferences of the players are not normal and cannot be
represented by real functions.

Definition . Let n be a positive integer greater than . An n-person nonmonetized
strategic game consists of the following elements:
. a set of n players, which is denoted by N = {, , . . . ,n};
. for every player i = , , . . . ,n, his set of strategies (Si,�i) is a poset. The collection of

profiles of strategies is denoted by S = S × S × · · · × Sn;
. an outcome space (U ;�U ) that is a poset;
. for every player i = , , . . . ,n, his utility function (payoff) Pi is a mapping from

S × S × · · · × Sn to (U ;�U ). We write P = {P,P, . . . ,Pn}.
This game is denoted by � = (N ,S,P,U).

A n-person nonmonetized strategic game� = (N ,S,P,U) is a noncooperative game. The
rule for playing a game � = (N ,S,P,U) is that when all n players simultaneously and inde-
pendently choose their own strategies x,x, . . . ,xn, respectively, to act, where xi ∈ Si, for
i = , , . . . ,n, player i will receive his utility (payoff) Pi(x,x, . . . ,xn) ∈U .
For any x = (x,x, . . . ,xn) ∈ S, and for every i = , , . . . ,n, as usual, we denote

x–i := (x,x, . . . ,xi–,xi+, . . . ,xn) and S–i := S × S × · · · × Si– × Si+ × · · · × Sn.

Then x–i ∈ S–i and x can be simply written as x = (xi,x–i). Moreover, we denote

Pi(Si,x–i) :=
{
Pi(ti,x–i) : ti ∈ Si

}
, for all x–i ∈ S–i.

For the convenience, we write S– := S = S × S × · · · × Sn.
Now we extend the concept of Nash equilibrium of strategic games to generalized and

extended Nash equilibrium of nonmonetized strategic games.

Definition . In an n-person nonmonetized strategic game � = (N ,S,P,U), a profile of
strategies (x̃, x̃, . . . , x̃n) ∈ S × S × · · · × Sn is called
. a generalized Nash equilibrium of this game if and only if

Pi(xi, x̃–i) 	U Pi(x̃i, x̃–i), for all xi ∈ Si, for every i = , , . . . ,n;

. an extended Nash equilibrium of this game if and only if

Pi(xi, x̃–i)�U Pi(x̃i, x̃–i), for all xi ∈ Si, for every i = , , . . . ,n.

It is clear that any generalized Nash equilibrium of a n-person nonmonetized strategic
game is an extended Nash equilibrium of this game; and the converse may not be true.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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Lemma . Let � = (N ,S,P,U) be a nonmonetized strategic game. For any fixed i =
, , , . . . ,n, we define a binary relation �–i on S–i × S–i as below: for any x–i, y–i ∈ S–i
with x–i = (x,x, . . . ,xi–,xi+, . . . ,xn) and y–i = (y, y, . . . , yi–, yi+, . . . , yn)

x–i �–i y–i if and only if xj �j yj, for all j = , , . . . , i – , i + , . . . ,n.

Then (S–i,�–i) is a poset. Furthermore, if for every j = , , . . . , i – , i + , . . . ,n, (Sj,�j) is a
chain complete (an inductive or a universally inductive) poset, then (S–i,�–i) is also a chain
complete (an inductive or a universally inductive) poset.

Proof The proof is straightforward and is omitted here. �

For convenience, (S–,�–) is written as (S,�S).

Definition . In a n-person nonmonetized strategic game � = (N ,S,P,U), we define
. a set-valued mapping Bi : S–i → Si

Bi(x–i) =
{
zi ∈ Si : Pi(zi,x–i) is a maximal element of Pi(Si,x–i)

}
, for all x–i ∈ S–i.

Bi is called the maximal response function for player i, for i = , , . . . ,n;
. a set-valued mapping βi : S–i → Si

βi(x–i) =
{
zi ∈ Si : Pi(zi,x–i) is the greatest element of Pi(Si,x–i)

}
, for all x–i ∈ S–i.

βi is called the best response function for player i, for i = , , . . . ,n.

In case ifBi(x–i) �=∅, for all x–i ∈ S–i, then, as a set-valuedmapping,Bi is order-increasing
upward on S–i, if, for any x–i, y–i ∈ S–i with x–i 	–i y–i and for any zi ∈ Bi(x–i), there is
wi ∈ Bi(y–i) such that zi 	i wi.

Theorem . Let � = (N ,S,P,U) be an n-person nonmonetized strategic game. Suppose
that (Si,�i) is a chain complete poset, for i = , , . . . ,n. Assume, for every player i, the fol-
lowing conditions hold:
. Pi(Si,x–i) is an inductive subset of (U ,�U ), for every x–i ∈ S–i;
. the maximal response function Bi : S–i → Si\{∅} is order-increasing upward on

(S–i,�–i) with universally inductive values;
. there are elements a = (a,a, . . . ,an) and b = (b,b, . . . ,bn) in S with a	S b satisfying

ai ∈ Bi(b–i), for i = , , . . . ,n.

Then this game � has an extended Nash equilibrium.

Proof From assumption , and applying Zorn’s lemma, Pi(Si,x–i) has at least one maximal
element in Pi(Si,x–i). It implies that Bi(x–i) �=∅, for all x–i ∈ S–i.
Notice x = (xi,x–i), for every x = (x,x, . . . ,xn) ∈ S, and for every i = , , . . . ,n, and S can

be rewritten as S = (Si,S–i). Then the maximal response function for player i, Bi : S–i →

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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Si\{∅} can be considered as a set-valued mapping from S to Si\{∅} that is defined as

Bi(x) = Bi(x–i), for any x = (xi,x–i) ∈ S, for every i = , , . . . ,n.

Then we define B : S → S\{∅} by B = B × B × · · · × Bn; that is,

B(x) =
(
B(x),B(x), . . . ,Bn(x–n)

)
, for any x ∈ S. ()

We show that B is order-increasing upward on S. To this end, for any x, y ∈ S with x 	S

y, and for every i, from the definitions of the orders 	S on S and �–i on S–i, it implies
x–i, y–i ∈ S–i with x–i 	–i y–i. For any given z = (z, z, . . . , zn) ∈ B(x), from (), we have
zi ∈ Bi(x–i). Since x–i 	–i y–i, by applying assumption  in this theorem, there iswi ∈ Bi(y–i)
with zi 	X wi, for i = , , . . . ,n. Let

w = (w,w, . . . ,wn).

It is clearly to be seen thatw ∈ B(y) with z 	S w. It follows thatB is order-increasing upward
on S.
For every x = (x,x, . . . ,xn) ∈ S, and for every i = , , . . . ,n, from condition , Bi(x–i) is a

universally inductive subset in Si. Then by Lemma . and from (), it implies that B(x)
is a universally inductive subset in S.
From the definition of the mapping B, the elements a, b in S given in condition  with

ai ∈ Bi(b–i), for i = , , . . . ,n, satisfy a ∈ B(b) and a 	S b. Hence the mapping B satisfies
all conditions in Theorem .; and therefore, it has a fixed point, say v = (v, v, . . . , vn)
with v ∈ B(v). Then, for i = , , . . . ,n, vi ∈ Bi(v–i); that is, Pi(vi, v–i) is a maximal element of
Pi(Si, v–i). Hence

Pi(xi, v–i)�U Pi(vi, v–i), for all xi ∈ Si and for i = , , . . . ,n.

It follows that v = (v, v, . . . , vn) is an extended Nash equilibrium of this game. �

If we replace the maximal response functions Bi’s by the best response function βi’s in
Theorem ., we can get an existence theorem of generalized Nash equilibrium for n-
person nonmonetized strategic games.

Theorem . Let � = (N ,S,P,U) be an n-person nonmonetized strategic game. Suppose
that (Si,�i) is a chain complete poset, for i = , , . . . ,n. Assume, for every player i, the fol-
lowing conditions hold:
. Pi(Si,x–i) is a subset of (U ,�U ) and has a greatest element, for every x–i ∈ S–i;
. The best response function βi : S–i → Si\{∅} is order-increasing upward on (S–i,�–i)

with universally inductive values;
. There are elements a = (a,a, . . . ,an) and b = (b,b, . . . ,bn) in S with a 	S b satisfying

ai ∈ βi(b–i), for i = , , . . . ,n.

Then this game � has a generalized Nash equilibrium.

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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In Theorems . and ., the profiles set and outcomes set are both posets, which is
just endowed with a partial order; and it is equipped with neither a topological structure,
nor an algebraic structure. Therefore, neither continuity nor linearity for the considered
maximal response functions and the best response functions in these theorems is applied.
Next we consider some very practical cases that the profiles set and outcomes set are both
partially ordered topological spaces, and prove some existence theorems for extended and
generalized Nash equilibriums by applying Corollaries . and ..

Corollary . Let (Xi, τi,�i) be a partially ordered topological space, for i = , , . . . ,n. Let
� = (N ,S,P,U) be an n-person nonmonetized strategic game. Suppose that Si is a compact
subset of Xi, for i = , , . . . ,n. Assume, for every player i, the following conditions hold:
. Pi(Si,x–i) is an inductive subset of (U ,�U ), for every x–i ∈ S–i;
. the maximal response function Bi : S–i → Si\{∅} is order-increasing upward on

(S–i,�–i) with compact values;
. there are elements a = (a,a, . . . ,an) and b = (b,b, . . . ,bn) in S with a	S b satisfying

ai ∈ Bi(b–i), for i = , , . . . ,n.

Then this game � has an extended Nash equilibrium.

Corollary . Let (Xi, τi,�i) be a partially ordered topological space, for i = , , . . . ,n. Let
� = (N ,S,P,U) be an n-person nonmonetized strategic game. Suppose that Si is a compact
subset of Xi, for i = , , . . . ,n. Assume, for every player i, the following conditions hold:
. Pi(Si,x–i) is a subset of (U ,�U ) possessing its greatest element, for every x–i ∈ S–i;
. the best response function βi : S–i → Si\{∅} is order-increasing upward on (S–i,�–i)

with compact values;
. there are elements a = (a,a, . . . ,an) and b = (b,b, . . . ,bn) in S with a	S b satisfying

ai ∈ βi(b–i), for i = , , . . . ,n.

Then this game � has a generalized Nash equilibrium.

5 Examples
Example . In the example of the extended prisoner’s dilemma given in Section , it can
be easily checked that the action (strategy) profile (FF, FF) is a generalized Nash equilib-
rium of this game.

In Example ., the set of strategy profiles is finite; and therefore, the ranges of the utility
functions are also finite. Next, we spread the extended prisoner’s dilemma to a -person
nonmonetized strategic game with infinitely many strategy profiles and with continuous
utility functions.

Example . (The two arrested venal officials’ dilemma) Two suspects, designated Sus-
pect  and Suspect , are arrested and held in separate cells without anymeans of commu-
nicating with each other. Each of the suspects is potentially guilty of two separate crimes:
accepting bribes and/or corruption (abbreviated as B and C, respectively). In addition,
there is enough evidence to convict each suspect of twominor offenses related to B and C,

http://www.fixedpointtheoryandapplications.com/content/2014/1/192
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respectively: accepting h dollars in bribes and/or embezzling t dollars through corruption,
for some h, t > . The prosecutor takes an action against both suspects for bribes accepted
up to H and for corruption up to T (in dollars), for some H > h and T > t, which are the
principal crimes B and C. However, there is not enough evidence to convict either suspect
of more severely for crimes B and/or C (up to the principal crimes B and/or C) unless at
least one suspect acts as an informant against the other (‘finks’) for crime B or C.
If both suspects stay quiet, then each will be convicted of the minor offenses for both

crime B and C, resulting in fines of t + h dollars and jail sentences of t/(
√
T) + h/(

√
H)

days.
If, for i = , , simultaneously, Suspect i finks against Suspect –i for crime B by revealing

an amount of xiB in addition to h and finks for crime C by revealing an amount of xiC
in addition to t, then Suspect i will be charged with a reduced penalty if xiB > x–iB and a
reduced penalty if xiC > x–iC ; otherwise Suspect i will be charged more severely for crimes
B and/or C. The sentences for the two suspects are equitably calculated, therefore, the
utility functions of the two suspects are symmetric.
In this game, every point in [,H – h] × [,T – t] is a possible strategy for each player

(suspect). Then the set of strategies for each player is

Si = [,H – h]× [,T – t], for i = , .

For any given strategy profile ((xiB,xiC), (x–iB,x–iC)) ∈ Si × S–i, Suspect i will be fined an
amount of (in dollars)

h + t + (xiB + x–iB –
√
xiBx–iB) + (xiC + x–iC –

√
xiCx–iC);

and will be held in prison for (in days)

h + (xiB + x–iB –
√xiBx–iB)


√
H

+
t + (xiC + x–iC –√xiCx–iC)√

T
.

More precisely, Suspect i has the following utility function:

Pi
(
(xiB,xiC), (x–iB,x–iC)

)

=
(
h + t + (xiB + x–iB –

√
xiBx–iB) + (xiC + x–iC –

√
xiCx–iC),

h + (xiB + x–iB –
√xiBx–iB)


√
H

+
t + (xiC + x–iC –√xiCx–iC)√

T

)

for ((xiB,xiC), (x–iB,x–iC)) ∈ Si × S–i. By the given utility functions, the set of possible out-
comes is

U =
[
h + t, H – h + (T – t)

] ×
[

h


√
H

+
t√
T
,
H – h


√
H

+
T – t√

T

]
.

Suppose that, for each suspect, the amount of bribes accepted and the amount embezzled
are not interchangeable. In addition, the amounts fined and the days sentenced to jail are
not substitutable. Then the first part of the assumption implies that the sets of strategies
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Si are endowed with the coordinate ordering relation in -Euclidean space. That is, for
xi = (xi,xi), yi = (yi, yi) ∈ Si,

xi �i yi if and only if xi ≥ yi and xi ≥ yi.

Then (Si,�i) is a partially ordered topological space, for i = , .
From the second part of the assumption, we see that the suspects’ preferences are re-

versed coordinate ordering relations on R. According to the suspects’ preferences, an
ordering relation �U on U is defined as: for u = (u,u), v = (v, v) ∈U ,

u�U v if and only if v ≥ u and v ≥ u.

Then (U ,�U ) is a poset (in fact, it is a partially ordered topological space with respect to
the ordinal topology on R).
By optimizing the utility function, one can check that, for each Suspect i, the best re-

sponse function βi : S–i → Si\{∅} is a single-valued function such that

βi(x–iB,x–iC) =
(
x–iB


,
x–iC


)
, for all (x–iB,x–iC) ∈ S–i.

Clearly, the two best response function β and β have a unique intersection point
((, ), (, )), which is the unique generalized Nash equilibrium of this game.

Example . (A different version of the two arrested venal officials’ dilemma) Assume the
same facts as Example . with the following utility functions instead:

Pi
(
(xiB,xiC), (x–iB,x–iC)

)

=
(
h + t +

(
xiB


+ x–iB –
√
xiBx–iB

)
+ 

(
xiC


+ x–iC –
√
xiCx–iC

)
,

h + ( xiB + x–iB –
√xiBx–iB)


√
H

+
t + ( xiC + x–iC –√xiCx–iC)√

T

)

for ((xiB,xiC), (x–iB,x–iC)) ∈ Si×S–i. To find the best response function βi’s, simply consider
a real valued function with variable x, f (x) = x

 + y – √xy, for some fixed nonnegative
number y. Clearly,

f (x) – f (y) =
x

+
y

–

√
xy =



(
√
x –

√
y) ≥ .

It implies that, for each Suspect i, the best response function βi : S–i → Si\{∅} is a single-
valued function

βi(x–iB,x–iC) = (x–iB,x–iC), for all (x–iB,x–iC) ∈ S–i.

We find that, for any (xB,xC) ∈ S, the strategic profile ((xB,xC), (xB,xC)) is a general-
ized Nash equilibrium of this game. Hence this game has infinitely many generalized Nash
equilibria.
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