272 research outputs found

    Effects of climate and snow depth on Bromus tectorum population dynamics at high elevation

    Get PDF
    Invasive plants are thought to be especially capable of range shifts or expansion in response to climate change due to high dispersal and colonization abilities. Although highly invasive throughout the Intermountain West, the presence and impact of the grass Bromus tectorum has been limited at higher elevations in the eastern Sierra Nevada, potentially due to extreme wintertime conditions. However, climate models project an upward elevational shift of climate regimes in the Sierra Nevada that could favor B. tectorum expansion. This research specifically examined the effects of experimental snow depth manipulations and interannual climate variability over 5 years on B. tectorum populations at high elevation (2,175 m). Experimentally-increased snow depth had an effect on phenology and biomass, but no effect on individual fecundity. Instead an experimentally-increased snowpack inhibited population growth in 1 year by reducing seedling emergence and early survival. A similar negative effect of increased snow was observed 2 years later. However, a strong negative effect on B. tectorum was also associated with a naturally low-snow winter, when seedling emergence was reduced by 86%. Across 5 years, winters with greater snow cover and a slower accumulation of degree-days coincided with higher B. tectorum seedling density and population growth. Thus, we observed negative effects associated with both experimentally-increased and naturally-decreased snowpacks. It is likely that the effect of snow at high elevation is nonlinear and differs from lower elevations where wintertime germination can be favorable. Additionally, we observed a doubling of population size in 1 year, which is alarming at this elevation

    Top Quark Mass Measurement from Dilepton Events at CDF II with the Matrix-Element Method

    Get PDF
    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from ppˉp\bar{p} collisions with s=1.96\sqrt s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing qqˉttˉbνbˉνq\bar{q} \to t\bar{t} \to b\ell\nu_{\ell}\bar{b}\ell'\nu_{\ell'} with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb1^{-1}, we observe 33 candidate events and measure Mtop=165.2±6.1(stat.)±3.4(syst.) GeV/c2.M_{top} = 165.2 \pm 6.1(\textrm{stat.}) \pm 3.4(\textrm{syst.}) \mathrm{~GeV}/c^2. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.Comment: 21 pages, 14 figure

    Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays

    Get PDF
    We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using 360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ) charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which the pions are from Rho0 decay. The latter case also encompasses exotic interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho hypotheses are compatible with our data. Since 3S1 is untenable on other grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872). Models for different J/Psi-Rho angular momenta L are considered. Flexibility in the models, especially the introduction of Rho-Omega interference, enable good descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let

    Search for New Physics in Lepton + Photon + X Events with L=305 pb-1 of ppbar Collisions at roots=1.96 TeV

    Get PDF
    We present results of a search for anomalous production of events containing a charged lepton (either electron or muon) and a photon, both with high transverse momentum, accompanied by additional signatures, X, including missing transverse energy (MET) and additional leptons and photons. We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb-1, a ppbar collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 Lepton+Photon+MET events versus a standard model expectation of 37.3 +- 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 +- 0.7 events (corresponding to a 2.7 sigma effect), is not supported by the new data. In the signature of Multi-Lepton+Photon+X we observe 31 events versus an expectation of 23.0 +- 2.7 events. In this sample we find no events with an extra photon or MET and so find no events like the one ee+gg+MET event observed in Run I.Comment: 7 pages, 3 figures, 1 table. Accepted to PR

    Search for Higgs Boson Decaying to b-bbar and Produced in Association with W Bosons in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for Higgs bosons decaying into b-bbar and produced in association with W bosons in p-pbar collisions at sqrt{s}=1.96 TeV. This search uses 320 pb-1 of the dataset accumulated by the upgraded Collider Detector at Fermilab. Events are selected that have a high-transverse momentum electron or muon, missing transverse energy, and two jets, one of which is consistent with a hadronization of a b quark. Both the number of events and the dijet mass distribution are consistent with standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio for the Higgs boson or any new particle with similar decay kinematics. These upper limits range from 10 pb for mH=110 GeV/c2 to 3 pb for mH=150 GeV/c2.Comment: 7 pages, 3 figures; updated title to published versio

    Measurement of the Inclusive Jet Cross Section using the Kt algorithm in pp-bar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We report on a measurement of the inclusive jet production cross section in pp-bar collisions at sqrt{s} = 1.96 TeV using data collected with the upgraded Collider Detector at Fermilab in Run II (CDF II) corresponding to an integrated luminosity of 385 pb^-1. Jets are reconstructed using the kt algorithm. The measurement is carried out for jets with rapidity 0.1 < | yjet | < 0.7 and transverse momentum in the range 54 < ptjet < 700 GeV/c. The measured cross section is in good agreement with next-to-leading order perturbative QCD predictions after the necessary non-perturbative parton-to-hadron corrections are included.Comment: Submitted to Phys. Rev. Let

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Search for anomalous semileptonic decay of heavy flavor hadrons produced in association with a W boson at CDF II

    Get PDF
    We present a search for anomalous semileptonic decays of heavy flavor hadrons produced in association with a WW boson, in proton-antiproton collisions at sqrt{s}=1.96 TeV. We use 162 pb-1 of data collected with the CDF II detector at the Fermilab Tevatron Collider. We select events with one W boson and at least one jet with an identified secondary vertex. In the jets with a secondary vertex we look for a semileptonic decay to a muon. We compare the number of jets with both a secondary vertex and a semileptonic decay, and the kinematic properties of these jets, with the standard model expectation of W plus heavy flavor production and decay. No discrepancy is seen between the observation and the expectation, and we set limits on the production cross section of a B-like hadron with an anomalously high semileptonic branching ratio.Comment: 8 pages, 2 figures, submitted to PRD-RC; replaced to adjust the page forma

    Measurement of the Ratios of Branching Fractions B(Bs->Ds- pi+)/B(B0->D-pi+) and B(B+->D0bar pi+)/B(B0->D-pi+)

    Get PDF
    We report an observation of the decay Bs -> Ds- pi+ in p pbar collisions at sqrt(s) = 1.96 TeV using 115 pb^(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We observe 83 +/- 11 Bs -> Ds- pi+ candidates, representing a large increase in statistics over previous measurements and the first observation of this decay at a p pbar collider. We present the first measurement of the relative branching fraction B(Bs -> Ds- pi+) / B(B0 -> D- pi+) = 1.32 +/- 0.18 (stat.) +/- 0.38 (syst.). We also measure B(B+ -> D0bar pi+) / B(B0 -> D- pi+) = 1.97 +/- 0.10(stat.) +/- 0.21(syst.), which is consistent with previous measurements

    Measurement of the Ratio of Branching Fractions B(D0 -> K+ pi-)/B(D0 -> K- pi+) using the CDF II Detector

    Get PDF
    We present a measurement of R_B, the ratio of the branching fraction for the rare decay D0 -> K+ pi- to that for the Cabibbo-favored decay D0 -> K- pi+. Charge conjugate decays are implicitly included. A signal of 2005 +/- 104 events for the decay D0 -> K+ pi- is obtained using the CDF II detector at the Fermilab Tevatron collider. The data set corresponds to an integrated luminosity of 0.35 1/fb produced in p-bar/p collisions at sqrt{s}=1.96 TeV. Assuming no mixing, we find R_B = [ 4.05 +/- 0.21 (stat) +/- 0.11 (syst) ] x 10(-3). This measurement is consistent with the world average, and comparable in accuracy with the best measurements from other experiments.Comment: 7 pages, 3 figure
    corecore