231 research outputs found

    Experimental evolution reveals divergence in female genital teeth morphology in response to sexual conflict intensity in a moth

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record The rapid evolutionary divergence of male genital structures under sexual selection is well documented. However, variation in female genital traits and the potential for sexual conflict to drive the coevolution between male and female traits has only recently received attention. In many lepidopterans females possess genital teeth (collectively, signa). Comparative studies suggest these teeth, involved in the deflation of spermatophores, may have coevolved with male spermatophore thickness via sexually antagonistic coevolution in a contest over the rate of deflation of spermatophores within the reproductive tract. We tested the hypothesis that sexual conflict should generate coevolution between genital teeth and spermatophore morphology by examining these traits under experimental manipulation of sexual conflict intensity. Using micro-CT scanning, we examined spermatophore and teeth morphology in populations of the Indian moth, Plodia interpunctella, which had been evolving for 110 generations under different adult sex-ratio biases. We found divergence in female signa morphology in response to sexual conflict: females from female-biased populations (reduced sexual conflict) developed wider signa. However, we found no evidence of coevolution between signa traits and spermatophore thickness as reported from comparative studies. This article is protected by copyright. All rights reserved.Australian Research CouncilRoyal Societ

    Variation in pre- and post-copulatory sexual selection on male genital size in two species of lygaeid bug

    Get PDF
    This study was funded by the Natural Environmental Research Council (DTG studentship 1109354 to LRD).Sexual selection has been shown to be the driving force behind the evolution of the sometimes extreme and elaborate genitalia of many species. Sexual selection may arise before and/or after mating, or vary according to other factors such as the social environment. However, bouts of selection are typically considered in isolation. We measured the strength and pattern of selection acting on the length of the male intromittent organ (or processus) in two closely related species of lygaeid seed bug: Lygaeus equestris and Lygaeus simulans. In both species, we measured both pre- and post-copulatory selection. For L. equestris, we also varied the experimental choice design used in mating trials. We found contrasting pre- and post-copulatory selection on processus length in L. equestris. Furthermore, significant pre-copulatory selection was only seen in mating trials in which two males were present. This selection likely arises indirectly due to selection on a correlated trait, as the processus does not interact with the female prior to copulation. In contrast, we were unable to detect significant pre- or post-copulatory selection on processus length in L. simulans. However, a formal meta-analysis of previous estimates of post-copulatory selection on processus length in L. simulans suggests that there is significant stabilising selection across studies, but the strength of selection varies between experiments. Our results emphasise that the strength and direction of sexual selection on genital traits may be multifaceted and can vary across studies, social contexts and different stages of reproduction.Publisher PDFPeer reviewe

    Differences in trait impulsivity indicate diversification of dog breeds into working and show lines

    Get PDF
    Impulsiveness describes the inability to inhibit behaviour in the presence of salient cues. Trait-level impulsivity exists on a continuum and individual differences can be adaptive in different contexts. While breed related differences in behavioural tendency in the domestic dog (Canis familiaris) are well established, the phenomenon within lines of a breed which have been selected more recently is not well studied, although it may challenge the popular notion of breed-typical behaviour. We describe differences in impulsivity between and within two dog breeds with working and show lines selected for different levels of impulsivity: Border Collies (herding work) and Labrador Retrievers (gun work). Recent show line selection might have lessened differences in impulsivity between breeds. We tested this hypothesis on a dataset of 1161 individuals assessed using a validated psychometric tool (Dog Impulsivity Assessment Scale - DIAS). Collies were more impulsive on average, consistent with the original purpose of breed selection. Regarding line, working Collies differed from working Labradors, but show lines from the two breeds were not significantly different. Altered or relaxed artificial selection for behavioural traits when appearance rather than behaviour become the primary focus for breeders may reduce average differences in impulsivity between breeds in show lines

    The Relationship Between GPS Sampling Interval and Estimated Daily Travel Distances in Chacma Baboons (Papio ursinus)

    Get PDF
    Modern studies of animal movement use the Global Positioning System (GPS) to estimate animals’ distance traveled. The temporal resolution of GPS fixes recorded should match those of the behavior of interest; otherwise estimates are likely to be inappropriate. Here, we investigate how different GPS sampling intervals affect estimated daily travel distances for wild chacma baboons (Papio ursinus). By subsampling GPS data collected at one fix per second for 143 daily travel distances (12 baboons over 11–12 days), we found that less frequent GPS fixes result in smaller estimated travel distances. Moving from a GPS frequency of one fix every second to one fix every 30 s resulted in a 33% reduction in estimated daily travel distance, while using hourly GPS fixes resulted in a 66% reduction. We then use the relationship we find between estimated travel distance and GPS sampling interval to recalculate published baboon daily travel distances and find that accounting for the predicted effect of sampling interval does not affect conclusions of previous comparative analyses. However, if short-interval or continuous GPS data—which are becoming more common in studies of primate movement ecology—are compared with historical (longer interval) GPS data in future work, controlling for sampling interval is necessary

    Analysis and Computational Dissection of Molecular Signature Multiplicity

    Get PDF
    Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities

    The development and characterisation of porphyrin isothiocyanate–monoclonal antibody conjugates for photoimmunotherapy

    Get PDF
    A promising approach to increase the specificity of photosensitisers used in photodynamic therapy has been through conjugation to monoclonal antibodies (MAb) directed against tumour-associated antigens. Many of the conjugations performed to date have relied on the activated ester method, which can lead to impure conjugate preparations and antibody crosslinking. Here, we report the development of photosensitiser–MAb conjugates utilising two porphyrin isothiocyanates. The presence of a single reactive isothiocyanate allowed facile conjugation to MAb FSP 77 and 17.1A directed against internalising antigens, and MAb 35A7 that binds to a non-internalising antigen. The photosensitiser–MAb conjugates substituted with 1–3 mol of photosensitiser were characterised in vitro. No appreciable loss of immunoreactivity was observed and binding specificity was comparable to that of the unconjugated MAb. Substitution with photosensitiser had a minimal effect on antibody biodistribution in vivo for the majority of the conjugates, although a decreased serum half-life was observed using a cationic photosensitiser at the higher loading ratios. Tumour-to-normal tissue ratios as high as 33.5 were observed using MAb 35A7 conjugates. The internalising conjugate showed a higher level of phototoxicity as compared with the non-internalising reagent, using a cell line engineered to express both target antigens. These data demonstrate the applicability of the isothiocyanate group for the development of high-quality conjugates, and the use of internalising MAb to significantly increase the photodynamic efficiency of conjugates during photoimmunotherapy

    In Search of HPA Axis Dysregulation in Child and Adolescent Depression

    Get PDF
    Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis in adults with major depressive disorder is among the most consistent and robust biological findings in psychiatry. Given the importance of the adolescent transition to the development and recurrence of depressive phenomena over the lifespan, it is important to have an integrative perspective on research investigating the various components of HPA axis functioning among depressed young people. The present narrative review synthesizes evidence from the following five categories of studies conducted with children and adolescents: (1) those examining the HPA system’s response to the dexamethasone suppression test (DST); (2) those assessing basal HPA axis functioning; (3) those administering corticotropin-releasing hormone (CRH) challenge; (4) those incorporating psychological probes of the HPA axis; and (5) those examining HPA axis functioning in children of depressed mothers. Evidence is generally consistent with models of developmental psychopathology that hypothesize that atypical HPA axis functioning precedes the emergence of clinical levels of depression and that the HPA axis becomes increasingly dysregulated from child to adult manifestations of depression. Multidisciplinary approaches and longitudinal research designs that extend across development are needed to more clearly and usefully elucidate the role of the HPA axis in depression
    corecore