10 research outputs found

    Dissecting human North African gene-flow into its western coastal surroundings

    Get PDF
    North African history and populations have exerted a pivotal influence on surrounding geographical regions, although scant genetic studies have addressed this issue. Our aim is to understand human historical migrations in the coastal surroundings of North Africa. We built a refined genome-wide dataset of North African populations to unearth the fine-scale genetic structure of the region, using haplotype information. The results suggest that the gene-flow from North Africa into the European Mediterranean coast (Tuscany and the Iberian Peninsula) arrived mainly from the Mediterranean coast of North Africa. In Tuscany, this North African admixture date estimate suggests the movement of peoples during the fall of the Roman Empire around the fourth century. In the Iberian Peninsula, the North African component probably reflects the impact of the Arab expansion since the seventh century and the subsequent expansion of the Christian Kingdoms. By contrast, the North African component in the Canary Islands has a source genetically related to present-day people from the Atlantic North African coast. We also find sub-Saharan gene-flow from the Senegambia region in the Canary Islands. Specifically, we detect a complex signal of admixture involving Atlantic, Senegambian and European sources intermixing around the fifteenth century, soon after the Castilian conquest. Our results highlight the differential genetic influence of North Africa into the surrounding coast and show that specific historical events have not only had a socio-cultural impact but additionally modified the gene pool of the populations

    European Roma groups show complex West Eurasian admixture footprints and a common South Asian genetic origin

    Get PDF
    The Roma population is the largest transnational ethnic minority in Europe, characterized by a linguistic, cultural and historical heterogeneity. Comparative linguistics and genetic studies have placed the origin of European Roma in the Northwest of India. After their migration across Persia, they entered into the Balkan Peninsula, from where they spread into Europe, arriving in the Iberian Peninsula in the 15th century. Their particular demographic history has genetic implications linked to rare and common diseases. However, the South Asian source of the proto-Roma remains still untargeted and the West Eurasian Roma component has not been yet deeply characterized. Here, in order to describe both the South Asian and West Eurasian ancestries, we analyze previously published genome-wide data of 152 European Roma and 34 new Iberian Roma samples at a fine-scale and haplotype-based level, with special focus on the Iberian Roma genetic substructure. Our results suggest that the putative origin of the proto-Roma involves a Punjabi group with low levels of West Eurasian ancestry. In addition, we have identified a complex West Eurasian component (around 65%) in the Roma, as a result of the admixture events occurred with non-proto-Roma populations between 1270–1580. Particularly, we have detected the Balkan genetic footprint in all European Roma, and the Baltic and Iberian components in the Northern and Western Roma groups, respectively. Finally, our results show genetic substructure within the Iberian Roma, with different levels of West Eurasian admixture, as a result of the complex historical events occurred in the Peninsula.This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number CGL2016-75389-P (MINEICO/FEDER, UE) and "Unidad María de Maeztu" (MDM-2014-0370) to DC and FC; and Agência de Gestió d'Ajuts Universitaris i de la Recerca (Generalitat de Catalunya, grant 2017SGR00702). NF-P was supported by a FPU17/03501 fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Whole Y-chromosome sequences reveal an extremely recent origin of the most common North African paternal lineage E-M183 (M81)

    No full text
    E-M183 (E-M81) is the most frequent paternal lineage in North Africa and thus it must be considered to explore past historical and demographical processes. Here, by using whole Y chromosome sequences from 32 North African individuals, we have identified five new branches within E-M183. The validation of these variants in more than 200 North African samples, from which we also have information of 13 Y-STRs, has revealed a strong resemblance among E-M183 Y-STR haplotypes that pointed to a rapid expansion of this haplogroup. Moreover, for the first time, by using both SNP and STR data, we have provided updated estimates of the times-to-the-most-recent-common-ancestor (TMRCA) for E-M183, which evidenced an extremely recent origin of this haplogroup (2,000-3,000 ya). Our results also showed a lack of population structure within the E-M183 branch, which could be explained by the recent and rapid expansion of this haplogroup. In spite of a reduction in STR heterozygosity towards the West, which would point to an origin in the Near East, ancient DNA evidence together with our TMRCA estimates point to a local origin of E-M183 in NW Africa.Funding was provided by the Agencia Estatal de Investigación and Fondo Europeo de Desarollo Regional (FEDER) (grant CGL2016-75389-P), and by Agència de Gestió d’Ajuts Universitaris i de la Recerca (Generalitat de Catalunya) grant 2014 SGR 866. NS is supported by a Formació de personal Investigador (FI) fellowship from Generalitat de Catalunya (FI_B00685

    Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza

    No full text
    Ibiza was permanently settled around the 7th century BCE by founders arriving from west Phoenicia. The founding population grew significantly and reached its height during the 4th century BCE. We obtained nine complete mitochondrial genomes from skeletal remains from two Punic necropoli in Ibiza and a Bronze Age site from Formentara. We also obtained low coverage (0.47X average depth) of the genome of one individual, directly dated to 361-178 cal BCE, from the Cas Molí site on Ibiza. We analysed and compared ancient DNA results with 18 new mitochondrial genomes from modern Ibizans to determine the ancestry of the founders of Ibiza. The mitochondrial results indicate a predominantly recent European maternal ancestry for the current Ibizan population while the whole genome data suggest a significant Eastern Mediterranean component. Our mitochondrial results suggest a genetic discontinuity between the early Phoenician settlers and the island's modern inhabitants. Our data, while limited, suggest that the Eastern or North African influence in the Punic population of Ibiza was primarily male dominated

    Weighted likelihood inference of genomic autozygosity patterns in dense genotype data

    No full text
    corecore