5 research outputs found

    Design of a randomized controlled trial of physical training and cancer (Phys-Can) – the impact of exercise intensity on cancer related fatigue, quality of life and disease outcome

    Get PDF
    Background: Cancer-related fatigue is a common problem in persons with cancer, influencing health-related quality of life and causing a considerable challenge to society. Current evidence supports the beneficial effects of physical exercise in reducing fatigue, but the results across studies are not consistent, especially in terms of exercise intensity. It is also unclear whether use of behaviour change techniques can further increase exercise adherence and maintain physical activity behaviour. This study will investigate whether exercise intensity affects fatigue and health related quality of life in persons undergoing adjuvant cancer treatment. In addition, to examine effects of exercise intensity on mood disturbance, adherence to oncological treatment, adverse effects from treatment, activities of daily living after treatment completion and return to work, and behaviour change techniques effect on exercise adherence. We will also investigate whether exercise intensity influences inflammatory markers and cytokines, and whether gene expressions following training serve as mediators for the effects of exercise on fatigue and health related quality of life. Methods/design: Six hundred newly diagnosed persons with breast, colorectal or prostate cancer undergoing adjuvant therapy will be randomized in a 2 × 2 factorial design to following conditions; A) individually tailored low-to-moderate intensity exercise with or without behaviour change techniques or B) individually tailored high intensity exercise with or without behaviour change techniques. The training consists of both resistance and endurance exercise sessions under the guidance of trained coaches. The primary outcomes, fatigue and health related quality of life, are measured by self-reports. Secondary outcomes include fitness, mood disturbance, adherence to the cancer treatment, adverse effects, return to activities of daily living after completed treatment, return to work as well as inflammatory markers, cytokines and gene expression. Discussion: The study will contribute to our understanding of the value of exercise and exercise intensity in reducing fatigue and improving health related quality of life and, potentially, clinical outcomes. The value of behaviour change techniques in terms of adherence to and maintenance of physical exercise behaviour in persons with cancer will be evaluated

    Splenic CD11c(+) cells derived from semi-immune mice protect naive mice against experimental cerebral malaria

    Get PDF
    Background: Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (\u27three-cure\u27) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods: C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semiimmune mice were isolated and transferred into naive mice which were subsequently challenged and followed up by survival and parasitaemia. Results: The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naive littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naive counterparts. Conclusion: CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody

    Tree species diversity and utilities in a contracting lowland hillside rainforest fragment in Central Vietnam

    Get PDF
    Abstract Background Within the highly bio-diverse ‘Northern Vietnam Lowland Rain Forests Ecoregion’ only small, and mostly highly modified forestlands persist within vast exotic-species plantations. The aim of this study was to elucidate vegetation patterns of a secondary hillside rainforest remnant (elevation 120–330 m, 76 ha) as an outcome of natural processes, and anthropogenic processes linked to changing forest values. Methods In the rainforest remnant tree species and various bio-physical parameters (relating to soils and terrain) were surveyed on forty 20 m × 20 m sized plots. The forest's vegetation patterns and tree diversity were analysed using dendrograms, canonical correspondence analysis, and other statistical tools. Results Forest tree species richness was high (172 in the survey, 94 per hectare), including many endemic species (>16%; some recently described). Vegetation patterns and diversity were largely explained by topography, with colline/sub-montane species present mainly along hillside ridges, and lowland/humid-tropical species predominant on lower slopes. Scarcity of high-value timber species reflected past logging, whereas abundance of light-demanding species, and species valued for fruits, provided evidence of human-aided forest restoration and ‘enrichment’ in terms of useful trees. Exhaustion of sought-after forest products, and decreasing appreciation of non-wood products concurred with further encroachment of exotic plantations in between 2010 and 2015. Regeneration of rare tree species was reduced probably due to forest isolation. Conclusions Despite long-term anthropogenic influences, remnant forests in the lowlands of Vietnam can harbor high plant biodiversity, including many endangered species. Various successive future changes (vanishing species, generalist dominance, and associated forest structural-qualitative changes) are, however, expected to occur in small forest fragments. Lowland forest biodiversity can only be maintained if forest fragments maintain a certain size and/or are connected via corridors to larger forest networks. Preservation of the forests may be fostered using new economic incentive schemes

    Nanotechnology Applications to Improve Solubility of Bioactive Constituents of Foods for Health-Promoting Purposes

    No full text
    Foods-derived multifunctional compounds, such as carotenoids, vitamins, phytosterols, polyunsaturated lipids, curcuminoids, flavonoids and polyphenols, in addition to the basic nutritional value, own extra health benefits and are considered \u201cpharmaceutical-grade nutrients\u201d better known as \u201dnutraceuticals\u201d. Similarly, phytochemicals from plants, characterized by analogous chemical structures, can be considered \u201cpharmaceutical-grade molecules\u201d. They could provide both diseases preventive actions and remarkable therapeutic benefits but, the efforts for identifying their mode of action and for applying them into food industry with health-promoting purposes, are often unsuccessful. Solubility is essential for a good absorption in the gastrointestinal tract and to achieve the systemic concentration necessary for an effective therapeutic activity, but the majority of these compounds are water-insoluble. Consequently, when ingested, they encounter many difficulties in crossing the diverse barriers to reach the bloodstream and to distribute to cells and tissues. Their absorption at gastric or intestinal level is troubled and in addition, they suffer from early degradation or fast metabolism, so rarely they manage to reach the site of action in therapeutically effective concentration and their clinical applications result strongly limited. Toxic excipients and harmful solubilizing agents were and are extensively used for solubilizing and delivering non-soluble bioactive chemicals (BACs) despite the resulting unpleasant side effects complained of by patients. During last decades, several new techniques, often resorting to nanotechnology, aiming at enhancing BACs solubility, at solving their pharmacokinetics drawbacks, at avoiding their early inactivation or fast metabolism, have been developed. On this background, the following chapter provides an overview concerning nanotechnology contribute and its technological advancements in \u201cmanufacturing\u201d nutraceuticals and phytochemicals in more bioavailable nanoparticles. In addition, it is reviewed the involvement of nanoscience in developing and enhancing food-grade solid nanosized materials to be used as BACs \u201ccontainers\u201d and \u201cvehicles\u201d either for their safe and effective oral administration, in the frame of medical treatments, or for achieving smart food ingredients to improve the quality and shelf life of nourishments
    corecore