6,273 research outputs found

    Stable Gravastars of Anisotropic Dark Energy

    Full text link
    Dynamical models of prototype gravastars made of phantom energy are constructed, in which an infinitely thin spherical shell of a perfect fluid with the equation of state p=(1−γ)σp = (1-\gamma)\sigma divides the whole spacetime into two regions, the internal region filled with a dark energy (or phantom) fluid, and the external Schwarzschild region. It is found that in some cases the models represent the "bounded excursion" stable gravastars, where the thin shell is oscillating between two finite radii, while in other cases they collapse until the formation of black holes or normal stars. In the phase space, the region for the "bounded excursion" gravastars is very small in comparison to that of black holes, but not empty, as found in our previous papers. Therefore, although the existence of gravastars can not be completely excluded from current analysis, the opposite is not possible either, that is, even if gravastars exist, they do not exclude the existence of black holes.Comment: 35 pages, 43 figures, added some clarifying texts and corrected some typos, accepted for publication in JCA

    An anti-Schwarzshild solution: wormholes and scalar-tensor solutions

    Full text link
    We investigate a static solution with an hyperbolic nature, characterised by a pseudo-spherical foliation of space. This space-time metric can be perceived as an anti-Schwarzschild solution, and exhibits repulsive features. It belongs to the class of static vacuum solutions termed "a degenerate static solution of class A". In the present work we review its fundamental features, discuss the existence of generalised wormholes, and derive its extension to scalar-tensor gravity theories in general.Comment: 3 pages, contribution to the proceedings of the Spanish Relativity Meeting-ERE200

    Role of Ni-Mn hybridization in magnetism of martensitic state of Ni-Mn-In shape memory alloys

    Full text link
    Extended X-ray Absorption Fine Structure (EXAFS) studies on Ni50_{50}Mn25+x_{25+x}In25−x_{25-x} have been carried out at Ni and Mn K edge as a function of temperature. Thermal evolution of nearest neighbor Ni-Mn and Mn-Mn bond distances in the martensitic phase give a clear evidence of a close relation between structural and magnetic degrees of freedom in these alloys. In particular, the study highlights the role of Ni 3d - Mn 3d hybridization in the magnetism of martensitic phase of these alloys.Comment: Accepted for publication in EP

    The LISA PathFinder DMU and Radiation Monitor

    Get PDF
    The LISA PathFinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.Comment: 11 pages, 7 figures, prepared for the Proceedings of the 8th International LISA Symposium, Classical and Quantum Gravit

    Cell bioprinting: The 3D-bioplotterâ„¢ case

    Get PDF
    The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with 3D bioprinters, such as the 3D-Bioplotterâ„¢. The 3D-Bioplotterâ„¢ has been used in the pre-clinical field since 2000 and could allow the printing of more than one material at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is also very precise with maximum flexibility and a user-friendly and stable software that allows the optimization of the bioprinting process on the technological point of view. Different applications have resulted from the research on this field, mainly focused on regenerative medicine, but the lack of information and/or the possible misunderstandings between papers makes the reproducibility of the tests dicult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D Bioprinting, which promises to be the next step in the bioprinting field and might promote great applications in the future

    Thermal diagnostic of the Optical Window on board LISA Pathfinder

    Full text link
    Vacuum conditions inside the LTP Gravitational Reference Sensor must comply with rather demanding requirements. The Optical Window (OW) is an interface which seals the vacuum enclosure and, at the same time, lets the laser beam go through for interferometric Metrology with the test masses. The OW is a plane-parallel plate clamped in a Titanium flange, and is considerably sensitive to thermal and stress fluctuations. It is critical for the required precision measurements, hence its temperature will be carefully monitored in flight. This paper reports on the results of a series of OW characterisation laboratory runs, intended to study its response to selected thermal signals, as well as their fit to numerical models, and the meaning of the latter. We find that a single pole ARMA transfer function provides a consistent approximation to the OW response to thermal excitations, and derive a relationship with the physical processes taking place in the OW. We also show how system noise reduction can be accomplished by means of that transfer function.Comment: 20 pages, 14 figures; accepted for publication in Class. Quantum Gra

    Correlation between Local Structure Distortions and Martensitic Transformation in Ni-Mn-In alloys

    Full text link
    The local structural distortions arising as a consequence of increasing Mn content in Ni_2Mn_1+xIn_1-x (x=0, 0.3, 0.4, 0.5 and 0.6) and its effect on martensitic transformation have been studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Using the room temperature EXAFS at the Ni and Mn K-edges in the above compositions, the changes associated with respect to the local structure of these absorbing atoms are compared. It is seen that in the alloys exhibiting martensitic transformation (x≥0.4x \ge 0.4) there is a significant difference between the Ni-In and Ni-Mn bond lengths even in the austenitic phase indicating atomic volume to be the main factor in inducing martensitic transformation in Ni-Mn-In Heusler alloys.Comment: 8 pages, 2 figure
    • …
    corecore