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Abstract: The classic cell culture involves the use of support in two dimensions, such as a well plate
or a Petri dish, that allows the culture of different types of cells. However, this technique does not
mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional
bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic
materials and cells. Because of a lack of information between data sources, the objective of this review
paper is, to sum up, all the available information on the topic of bioprinting and to help researchers
with the problematics with 3D bioprinters, such as the 3D-Bioplotter™. The 3D-Bioplotter™ has
been used in the pre-clinical field since 2000 and could allow the printing of more than one material
at the same time, and therefore to increase the complexity of the 3D structure manufactured. It is
also very precise with maximum flexibility and a user-friendly and stable software that allows the
optimization of the bioprinting process on the technological point of view. Different applications
have resulted from the research on this field, mainly focused on regenerative medicine, but the lack
of information and/or the possible misunderstandings between papers makes the reproducibility
of the tests difficult. Nowadays, the 3D Bioprinting is evolving into another technology called 4D
Bioprinting, which promises to be the next step in the bioprinting field and might promote great
applications in the future.
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1. Introduction

Three-dimensional (3D) printing, also called Rapid Prototyping (RP), was originally developed
by Charles Hull in 1986 as a technique called stereolithography (SLA) [1,2]. For being the first 3D
technology ever conceived, its precision and resolution were and are still high [3].

The first technology was stereolithography, which consists of the solidification of a photosensitive
material by an ultraviolet light source [4]. Later, other 3D printing techniques were conceived such as
fused deposition modelling (FDM) [5], inkjet printing, direct laser patterning, cell-sheet technology,
cell-laden technology, extrusion-based printing [6], valve-based technology, acoustic printing [7],
selective laser melting [8], selective laser sintering [9], and laminated object manufacturing [10]. Some
of these technologies can be seen in Figure 1. All of them can also be classified into four different
categories, like extrusion printing, material sintering, material binding, and lamination [11].
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Figure 1. Examples of the available techniques in the 3D printing field [12].

Those technologies were first applied in the 3D printing field, but, 17 years ago, a new field
was introduced called 3D Bioprinting, and the first application was the development of vascular
tissue networks to maintain the cells within culture [13]. In addition, another application was the
production of synthetic biocompatible supports for cells, also called scaffolds, to mimic the natural
cellular microenvironment [14]. Several conditions must be accomplished before bioprinting, such as
the acquisition of a 3D image, a computer-aided design (CAD) software [15], and the ability to control
the deposition of the materials used [16].

Different approaches can be used to bioprint, either with or without cells at the initial step [12].
In particular, 80% of printers are optimized for an extrusion-based printing [17]. The material extrusion,
especially of thermoplastic materials, is the most common and inexpensive technique because it can
use a wide range of materials like polylactic acid (PLA), polycaprolactone (PCL), polyvinyl alcohol
(PVA), and biodegradable calcium phosphate glass, which are then combined with cells such as human
monocytes, for example to study the inflammation process [18]. On the other hand, the bioprinting
technique can use cells directly so the design of a proper structure for the accommodation of cells in
the synthesized scaffolds is more complicated but offers some advantages such as the possibility to
optimize the cell deposition and distribution, and the printing speed [11]. Thus, the main difference
between a typical material extrusion and a bioprinting technique is that the first one does not use cells
directly, so it requires a post-seeding process that might not be required for bioprinting techniques.

As previously mentioned, the bioprinting process can be performed using two different approaches,
called pre-seeding and post-seeding [19]. The pre-seeding bioprinting is a type of 3D bioprinting that
involves the printing of both materials and cells at the same time. Although it requires more time to
properly optimize the geometry of the scaffold manufactured, it also provides high applicability and
efficiency. On the other hand, the post-seeding process, which could be used after an extrusion-based
printing, consists of first printing the material and then co-culturing it with the proper cells. In this
review paper, those techniques are related to the step in which the extrusion material and the cells are
combined, as it could be at the same time for direct bioprinting, or after the printing of the material
(i.e., mold or sacrificial structure) for indirect bioprinting. Compared to the direct bioprinting, the
indirect one has lower efficiency. To sum up, direct bioprinting is more time-consuming than indirect
bioprinting, but it also has higher efficiency on cell deposition and might also be a way to increase cell
viability within the scaffold designed by not exposing cells under more stress.

In that context, several combinations of materials and cells, also called bio-inks, can be used to
perform direct bioprinting by combining materials such as microcarriers, decellularized extracellular
matrixes (dECM), and hydrogels with cells from tissue spheroids, cell pellets, and tissue strands [20].
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Specifically, hydrogels have some interesting properties because they are in a solid/aqueous state.
They are easily controllable by changing temperature and humidity [21], biodegradable, biocompatible,
with tailorable mechanical strength, and readily available [17]. Their limits are related to the dissolution
kinetics in body fluids and the difficult sterilization process. Of course, other materials can be used
to avoid these limitations such as metals and metal alloys, ceramics and carbon compounds, and
composites [11].

The most important bioprinting limitations are connected with the need of a vascular network to
maintain cell viability within the bioprinted tissue or organ [7], the presence of bottlenecks between
biology and engineering to bioprint complex compositions [22,23], the complexity of native tissues [24],
the viscosity of the material [25–27], and, finally, the bio-inks available on the market. An ideal bio-ink
must be strongly biocompatible, with appropriate rheological parameters [15,28], architectural integrity,
and assure an equilibrium between cell viability and functionality after bioprinting [29].

In this review, we will focus on applications of 3D bio-printers available on the market, mainly the
3D-Bioplotter™ systems, for both direct and indirect bioprinting. We will be focused on 3D-Bioplotter™
systems because of their precision, flexibility, and user-friendly employment. These printers also
offer the possibility of a process optimization in relation to the effects of the parameters and their
interdependence with a stable platform that leads to a higher replicability of the results compared to
other bioprinters available on the market. Moreover, we will refer to the state of the art on bioprinting,
what has been done, and what will be needed for future studies.

2. Materials for Bioprinting

2.1. Polymers

2.1.1. Natural Polymers

Natural polymers, also called biopolymers, have different properties and advantages, related to
their chemical-physical compositions that can be adjusted to the target tissue and cell types [30–32].
If the scaffolds are properly planned, cells can have enough space for cell proliferation and
migration [33]. Rheological parameters also need to be considered because they have high relevancy
for the biofabrication process. Some of those parameters are the viscosity, shear-thinning, yield
stress, and porosity, among others [34]. The use of biopolymers allows a better mimicry of the
natural microenvironment of cells but have reproducibility problems of experiments because of their
batch-to-batch variability.

Nowadays, bioprinting uses many natural and semi-synthetic polymers, such as collagen
and fibrinogen [35,36], gelatin methacrylamide (GelMA) [34,37], alginate [38,39], Matrigel™ and
Cultrex® [40], and basement membranes (ECM containing proteins like fibronectin, laminin, and
collagen type IV) [41,42]. Other strategies can include the acquisition of ECM by inducing it to a
chondrocyte culture and then separating it from the cells by a devitalized technique [43].

2.1.2. Synthetic Polymers

Internal variations on natural polymer synthesis make the comparison between experiments
difficult. Synthetic polymers solve that problem because they have an exact structure and composition
between samples.

Some of the materials that are used might be polycaprolactone (PCL), polyethylene glycol and
derivatives (PEG), polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA) [44,45], and peptide
scaffolds of BD™ Pura Matrix™ [41,46].

2.2. Cross-Linking Methods

Different cross-linking methods can be employed to retain certain geometries of the materials
used for bioprinting, such as chemical, light, physical, and hybrid techniques. As seen in Figure 2,
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each material used is classified according to the type of cross-linking method used. As for the chemical
cross-linking, the majority of the articles use alginate as the main material (80%) followed by alginate:
gelatin (15%) and PEG-polymers (5%). In relation to the light techniques, the majority of the articles
report the use of methacrylated-gelatin (55.6%), followed by methacrylated hyaluronic acid (33.3%),
and hydroxyapatite (11.1%) as main materials of the hydrogels. Concerning the hybrid techniques, for
the combination of more than one technique, the majority of the authors use methacrylated-gelatin
(75%) or alginate (25%). Respecting the physical techniques, by the use of temperature, for example, the
majority of the articles report as main material lignin combined with HPU (50%) or decellularized ECM
(50%). Finally, a small part of the articles does not specify the cross-linking method used, and the main
materials used for their hydrogels are alginate (40%), alginate: gelatin (40%) or methacrylated-gelatin
(20%). Some examples of each category could be, for the chemical methods, the use of calcium ion
solution, for light techniques, the exposure to a UV light source, physical cross-linking by temperature
and hybrid techniques, by using more than one technique at the same time.

Figure 2. Description of the cross-linking techniques and their materials used for the 3D-Bioplotter™
bioprinter. The information is represented as percentages (%) and the different materials used are
represented by colors.

2.3. Cellular Typologies

In this section, the most important cell types that are being used with different types of 3D
bioprinters, and with the 3D-Bioplotter™will be described. All of the available information will be
distributed in subsections according to the type of cells used.

2.3.1. Vascular Tissues

Vascularization is very important for the bioprinting, especially for large tissue constructs, because
cells need a constant supply of nutrients and oxygen [12]. According to analyzed literature, one of the
strategies is the use of the HUVEC cell line to develop vascular networks for cell viability maintenance,
as seen in Table 1.



Materials 2019, 12, 4005 5 of 20

Table 1. Principal vascular tissue applications.

3D Printer Used Cell Line (s) Used Materials Used Application Reference

Modified thermal
inkjet printer from
HP® and Canon®

Not specified
Sacrificial material
(carbohydrate glass
filament networks)

Microvascular
networks [47,48]

3D-Bioplotter™ HUVEC 1 Gelatin ink completed
with PEG-SVA

Cell-compatible
hydrogels [49]

3D-Bioplotter™ HUVEC and HWA 2

Methacrylated gelatin,
methacrylated

hyaluronic acid, and
PEG-4A 3

Robust cryogel
for adipose tissue

engineering
[50]

1 human umbilical vein endothelial cells. 2 human adipose progenitor cell line. 3 polyethylene glycol-valeric acid.

It seems that the presence of a PEG-derived polymer within the hydrogel is needed for the
establishment of a proper vascular network for cell viability preservation. Because there is a lack of
information on the cell line used with a modified thermal inkjet printer, we cannot confirm that the use
of a sacrificial material like carbohydrate glass filament networks could be a better alternative than
using PEG-derived polymers for microvascular network synthesis.

2.3.2. Cartilage and Bone-Like Structures

Many cartilage and bone applications can be reflected in Table 2, by 3D-Bioplotter™ and
other 3D bioprinting machines. For cartilage tissue engineering, the majority of the cells used are
related to primary chondrocytes followed by one example of human chondrocytes [51]. For bone
tissue engineering, there are only two examples in the table, by using bone marrow stromal cells
(BMSCs) combined with different hydrogels and endothelial stromal cells derived from the stromal
vascular fraction of adipose tissue (SVFCs) used for the prevascularization process of bone constructs.
The majority of articles are focused on regenerative medicine applications such as improvement on
bioprinted cartilage [52], orthopedics [53–55], bone tissue bioprinting [56], prevascularization on bone
tissue constructs [57] and cartilage tissue engineering [58,59]. One of the indirect contributions to the
regenerative medicine field would be the study of a reversible cross-linking strategy [60]. In Table 2,
there is only one example of human chondrocytes with a PEGDA hydrogel [51], which could be an
isolated case because the articles that use primary chondrocytes are combined with alginate-based
and/or gelatin methacryloyl hydrogels. There is also a lack of information on three articles about the
cell lines used, which could help to determine if there is a relationship between the cell lines used and
the compounds of their hydrogels.

2.3.3. Cardiac Tissues

The principal applications for cardiac tissue engineering are reported in Table 3, mainly focused
on 3D-Bioplotter™ and with only one example of another brand of 3D bioprinter. The applications are
focused on the generation of tissue spheroids [61], regenerative medicine for the generation of cardiac
patches [62], cardiac implants, and nano-reinforced cardiac patches’ [63].

For 3D-Bioplotter™, human cardiac progenitor cells (hCPCs) and human coronary artery
endothelial tissues became used for regenerative medicine applications, combined with alginate-based
hydrogel or gelatin methacrylate hydrogel, then supplemented with support materials such as cardiac
extracellular matrix, PEI, calcium chloride, methacrylated collagen, and carboxyl functionalized carbon
nanotubes (CNTs).
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Table 2. Principal cartilage and bone applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

Modified HP® Deskjet
500 printer

Human chondrocytes PEGDA 1 hydrogel Ambiguous [51]

Multihead deposition
system (MHDS) printer

from AM technology
Not specified Alginate-based ink completed

with PCL 2
Strength improvement on

bioprinted cartilage [52]

3D printer Not specified PCL/hydroxyapatite hydrogel Orthopaedic applications [32,34,53,54]

Biological laser (BioLP)
printer designed in the

laboratory
Not specified Alginate/hydroxyapatite

hydrogel Orthopedic applications [55]

3D-Bioplotter™ BMSCs 3

Non-medical alginate hydrogel
and calcium chloride/Lutrol
F127/Matrigel/Agarose and

methylcellulose

Patterned constructs for bone
tissue bioprinting [56]

3D-Bioplotter™ SVFC 4 PCL/hydroxyapatite hydrogel Prevascularization in 3D
bioprinted bone constructs [57]

3D-Bioplotter™ Primary chondrocytes, other cells Alginate hydrogel, PCL and
calcium chloride Cartilage tissue engineering [58]

3D-Bioplotter™ Primary chondrocytes Alginate/hydroxyapatite
hydrogel Cartilage tissue engineering [59]

3D-Bioplotter™
Primary chondrocytes,

Mesenchymal stem cells,
Cartilage derived progenitor cells

Gelatin methacryloyl hydrogel,
with a photoinitiator

Reversible cross-linking strategy
on cartilage tissue engineering [60]

1 poly(ethylene glycol) diacrylate. 2 polycaprolactone. 3 bone marrow stromal cells. 4 endothelial stromal cells derived from the stromal vascular fraction of adipose tissue.
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Table 3. Principal cardiac tissue applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

Printer designed by
nScrypt Inc.

Cardiac cells and
HUVEC 1 Not specified Tissue

spheroids [61]

3D-Bioplotter™ hCPCs 2
Gelatin methacrylate
hydrogel and cardiac

ECM 3
Cardiac patches [62]

3D-Bioplotter™
Human coronary
artery endothelial

tissues

Alginate hydrogel
and calcium

chloride/PEI 4

Cardiac
implants [63]

3D-Bioplotter™ Human coronary
artery endothelial cells

Alginate hydrogel
and methacrylated

collagen and CNTs 5

Nano-reinforced
cardiac patches [63]

1 human umbilical vein endothelial cells. 2 human cardiac progenitor cells. 3 extracellular matrix.
4 polyethyleneimine. 5 carboxyl functionalized carbon nanotubes.

2.3.4. Liver Tissues

For liver tissue applications, exposed in Table 4, there are only two examples of each type
of 3D bioprinter. In the case of Organovo 3D-bioprinter, there is no information about the cell
lines and materials used [64], which make the comparison of the two types of bioprinters difficult.
The only described example is the use of 3D-Bioplotter™ for the bioprinting of liver tissue using a
decellularized extracellular matrix of the liver and a sacrificial material called Pluronic F-127, combined
with immortalized mouse small cholangiocytes and a cancer cell line called HUH7 [65].

Table 4. Principal liver tissue applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

Organovo
3D-bioprinter Not specified Not specified (with

problems)
Microliver tissues for
in vitro drug testing [64]

3D-Bioplotter™

Immortalized
mouse small

cholangiocytes and
HUH7 1

dECM 2 of the liver
and sacrificial material

(Pluronic F-127)

3D-Bioprinting for
liver tissues [65]

1 human hepatocellular carcinoma cell line. 2 decellularized extracellular matrix.

2.3.5. Stem Cells

In the subject of stem cell applications, the majority of the papers use an alginate-based hydrogel
with only three examples of methacrylated gelatin hydrogels combined [66–70], as reflected in Table 5.
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Table 5. Principal stem cell applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

3D-Bioplotter™ iPSCs 1 and/or hNSCs 2 Alginate-CMC 3 hydrogel Tissue bioprinting [60]

3D-Bioplotter™ iPSCs Alginate-CMC-agarose hydrogel and
calcium chloride

In situ cell proliferation and
successive multilineage

differentiation
[66]

3D-Bioplotter™ ASMCs 4
Complex hydrogel (methacrylated

hyaluronic acid, methacrylated gelatin,
hyaluronic acid and gelatin

Breast cancer model for drug
resistance study [67]

3D-Bioplotter™ Human mesenchymal stem cells Methacrylated gelatin hydrogel Placenta model for
preeclampsia [69]

3D-Bioplotter™ Frontal cortical human neural
stem cells

Alginate-CMC-agarose hydrogel and
calcium chloride

Human neural tissues’
applications [60]

3D-Bioplotter™ Frontal cortical human neural
stem cells

Alginate-CMC-agarose hydrogel and
calcium chloride

Production of neural
mini-tissues [60]

3D-Bioplotter™ Human mesenchymal stem cells
and L929 fibroblasts

Gelatin methacrylate hydrogel/alginate
hydrogel and calcium chloride

Mesoscopic fluorescence
tomography for bone tissue

engineering
[70]

3D-Bioplotter™ hASCs 5 Alginate hydrogel and calcium chloride
Monitoring of 3D constructs via

dielectric impedance
spectroscopy technique

[68]

3D-Bioplotter™ Human adipose-derived
mesenchymal stem cells Sodium alginate-gelatin hydrogel Osteogenesis’ applications on

in vivo studies [71]

1 induced-pluripotent stem cells. 2 human neural stem cells. 3 carboxymethyl-chitosan. 4 adipose-derived mesenchymal stem/stromal cells. 5 human adipose-derived stem cells.
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There is also a clear relationship between cell lines and hydrogel compositions, in some cases.
This can be observed with iPS and neural stem cells that use an alginate hydrogel supplemented
with carboxymethyl-chitosan and agarose, with human mesenchymal stem cells for containing
methacrylated gelatin as one component of their respective hydrogels [69,70]. The majority of
applications are related to regenerative medicine such as the production of neural mini-tissues [60] but
also related to model development for drug testing and the study of diseases such as breast cancer [67]
and preeclampsia [69]. Only two examples are related to the development of techniques such as
dielectric impedance spectroscopy technique [68] and mesoscopic fluorescence tomography [70].

2.3.6. Cancer Cells

Principal cancer cell applications are represented in Table 6. Alginate is the main component of
the hydrogels, followed by methacrylated gelatin and a complex hydrogel formulation [67].

Table 6. Principal cancer cell applications.

3D Printer Used Cell line (s) Used Materials Used Applications Reference

3D-Bioplotter™ 21PT cell line 1

Complex hydrogel
(methacrylated hyaluronic
acid, methacrylated gelatin,
hyaluronic acid and gelatin

Breast cancer model for drug
resistance study [67]

3D-Bioplotter™ SaOS-2 cell line 2 Biocalcite hydrogel (alginate
and biosilica)

Synthesis of calcium
phosphate-bone [72]

3D-Bioplotter™
HUH7 3 and

immortalized mouse
small cholangiocytes

dECM 4 of the liver and
sacrificial material (Pluronic

F-127)

3D-Bioprinting for liver
tissues [65]

3D-Bioplotter™ SaOS-2 cell line
Alginate-gelatin-bioglass
hydrogel, polyP/calcium

chloride, and silica/biosilica

Growth and
biomineralization of SaOS-2

cells on bioglass
[72]

3D-Bioplotter™ SaOS-2 cell line
Alginate-gelatin-agarose

hydrogel and calcium
chloride

Bioprinting of bioartificial
tissue [73]

3D-Bioplotter™ MG63 cell line 5 and
hASCs 6

Alginate hydrogel and
calcium chloride

Monitoring of 3D constructs
via dielectric impedance
spectroscopy technique

[68]

3D-Bioplotter™ HepG2 7
Methacrylated gelatin

B-type photocurable with
UV-light

Constructs with high cell
viability [74]

3D-Bioplotter™ ATDC5 8 Alginate hydrogel and PCL 9 Cartilage tissue engineering [58]

3D-Bioplotter™ ATDC5
Alginate-hyaluronic acid

hydrogel and calcium
chloride or PVA 10 or PEI 11

Tissue reparation [75]

3D-Bioplotter™ ATDC5 Alginate hydrogel and PCL
and calcium chloride

Cartilage tissues’
applications [76]

3D-Bioplotter™ JEG3 cell line 12 and
trophoblast cells

Methacrylated gelatin
hydrogel and EGF 13

Testing on ZEB2, a master
regulator of EMT 14 [77]

1 HER2 -positive breast tumour cell line. 2 sarcoma osteogenic cell line. 3 hepatocellular carcinoma cell line.
4 decellularized extracellular matrix. 5 osteosarcoma cell line. 6 human adipose-derived stem cells. 7 hepatocarcinoma
cell line. 8 mouse teratocarcinoma cell line. 9 polycaprolactone. 10 poly(vinyl alcohol). 11 polyethyleneimine.
12 choriocarcinoma cell line. 13 epidermal growth factor. 14 epithelial-mesenchymal transition.

The applications are related to regenerative and other medical studies but only is associated
with cancer study, which in that case is drug testing using an HER-2 positive breast cancer cell line
called 21PT, combined with a complex hydrogel based on methacrylated gelatin supplemented with
other compounds [67]. One interesting study would be the one associated with the biofabrication of
constructs with high cell viability because the authors performed a photo-crosslinking technique with
a UV light source that apparently does not affect the cell viability of the scaffold [74].
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2.3.7. Adipose Tissues

In the matter of adipose tissue applications, only two examples are found in Table 7 that use
methacrylated gelatin-based hydrogels. Only one example is related to regenerative medicine on
adipose tissue engineering, with supplementation of PEG-4A in the hydrogel [50]. The other application
is related to the metabolic study for the differences between white and brown adipose tissues [57].

Table 7. Principal adipose tissue applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

3D-Bioplotter™ WAP 1 and BAP 2

Methacrylated
hyaluronic

acid-methacrylated
gelatin and hyaluronic

acid and gelatin

Checking
behaviour and

metabolic function
on human brown

adipocyte

[57]

3D-Bioplotter™ HWA 3 and
HUVEC 4

Methacrylated gelatin,
methacrylated

hyaluronic acid, and
PEG-4A 5

Robust cryogel for
adipose tissue
engineering

[50]

1 human white adipose progenitor cells. 2 human brown adipose progenitor cells. 3 human adipose progenitor cells.
4 human umbilical vein endothelial cells. 5 4arm poly(ethylene glycol) acrylate.

2.3.8. Muscle Cells

For muscle cells, there is only one application that uses L8 myoblasts and Schwann cells, combined
with an alginate-based hydrogel for a study of cell damages of bioprinting processes [78], seen in
Table 8.

Table 8. Muscle cell application, for 3D-Bioplotter™ technology.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

3D-Bioplotter™ L8 myoblasts and
Schwann cells

Alginate hydrogel
and DMEM 1

Characterization of
cell damage and

proliferative ability
during and after

bioprinting

[78]

1 Dulbecco’s modified eagle medium.

2.3.9. Schwann Cells

Concerning Schwann cell applications, the main component of the hydrogels employed is alginate,
supplemented with different support materials depending on the cell line and resulted applications.
Some applications the development of better peptide-modified alginate scaffolds [79], the repair of
peripheral nerve injury [80], production of scaffolds with high integrity and cell viability [81], and the
explanation of cell damage and proliferative ability on bioprinting processes [78]. Further information
can be found in Table 9.
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Table 9. Principal Schwann cell applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

3D-Bioplotter™ Living Schwann
cells

Alginate/RGD
1-alginate hydrogel,

hyaluronic acid,
fibrinogen, and

calcium chloride

Potential nerve tissue
engineering
applications

[78]

3D-Bioplotter™ Rat primary
Schwann cells

Alginate hydrogel,
RGD/YIGSR 2 peptides,

and calcium
chloride/PEI 3

Peptide-modified
alginate scaffolds [79]

3D-Bioplotter™ RSC96 cell line 4
Alginate hydrogel,

hyaluronic acid, and
calcium chloride

Scaffolds with high
integrity and cell

viability
[81]

3D-Bioplotter™ RSC96 cell line and
L8 myoblasts

Alginate hydrogel and
DMEM 5

Characterization of cell
damage and

proliferative ability
during and after

bioprinting

[78]

3D-Bioplotter™ RSC96 cell line Alginate hydrogel and
calcium chloride/PEI

Repair of peripheral
nerve injury [80]

3D-Bioplotter™ Rat Schwann cells
and ATDC5 6

Alginate-hyaluronic
acid hydrogel and

calcium chloride/PVA 7

or PEI 8

Tissue reparation [75]

1 arginine-glycine-aspartate peptide. 2 tyrosine-isoleucine-glycine-serine-arginine peptide. 3 polyethyleneimine. 4

ATTC immortalized rat Schwann cell line. 5 Dulbecco’s modified eagle medium. 6 mouse teratocarcinoma cell line.
7 poly(vinyl alcohol). 8 polyethyleneimine.

2.3.10. Skin Tissues

Relative to skin tissue applications (Table 10) almost all hydrogels use methacrylated gelatin
followed by PEG formulations and a novel hydrogel formulation. One interesting article is the
proposed alternative hydrogel formulation based on lignin, which is suggested as a new concept for
skin tissue bioprinting. The majority of the papers correspond to regenerative medicine, except for one
on the use of mesoscopic fluorescence tomography, previously mentioned [70]. Except for the novel
formulation [82], it seems that the common cross-linking method used is the chemical one, exempting
the use of a photoinitiator and tyrosinase on bioprinting of living skin tissue constructs [83].
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Table 10. Principal skin tissue applications.

3D Printer Used Cell Line (s) Used Materials Used Applications Reference

3D-Bioplotter™ HDF 1 and HUVEC 2 35 formulations of PEG
3-X polymers

Cell-compatible
hydrogels [49]

3D-Bioplotter™
L929 fibroblasts and

Human mesenchymal
stem cells

Gelatin methacrylate
hydrogel/alginate

hydrogel and calcium
chloride

Mesoscopic
fluorescence

tomography for
bone tissue
engineering

[70]

3D-Bioplotter™ NIH/3T3 cell line 4 Methacrylated gelatin
hydrogel and EGF 5

Regenerative
medicine for

tympanic
membrane

perforations

[69]

3D-Bioplotter™ Primary human
dermal fibroblast cells

Lignin—HPU 6

hydrogel

A new concept for
fibroblasts
bioprinting

[82]

3D-Bioplotter™ HEM 7, HaCat 8,
and HDF

Gelatin
methacrylamide

hydrogel, collagen,
and photoinitiator (and

tyrosinase)

Bioprinting of
living skin
constructs

[83]

1 human dermal fibroblasts. 2 human umbilical vein endothelial cells. 3 poly(ethylene glycol). 4 murine fibroblast
cell line. 5 epidermal growth factor. 6 hydrophilic polyurethane. 7 human melanocytes. 8 human keratinocytes.

2.4. General Summary

The main and support materials used for bioprinting can be seen in Figures 3 and 4, obtained
from a revision of the literature of 40 articles on bioprinting tests with the 3D-Bioplotter™.

As seen in Figure 3, the most common material used for scaffold manufacturing is alginate.
Alginate is a good candidate because it is cheap, easy to print, to handle and extrude while protecting
encapsulated cells within it [84]. It has limits such as the absence of cell-adhesion properties [85],
but they can be avoided by adding gelatin [86], hyaluronic acid [75], or methacrylated collagen [63] as
support materials.

As for the scaffold geometry, there is not a clear default geometry because it depends on the type
of bio-inks used and the authors and the final applications in each case. As previously said, alginate is
an interesting material to be used for bioprinting, not only because it is cheap but also because of its
high biocompatibility and the ability to absorb water, and therefore the ability to control cell viability
within the hydrogel [87,88].

One of the main issues in 3D bioprinting is to maintain the cell viability because many factors
such as shear stress during printing and cell encapsulation could reduce the cell growth from 40% to
2% and that cell damage may also be caused by the different cross-linking processes performed after
bioprinting [89]. Materials by themselves, like alginate, have some limitations that might influence the
cell viability during bioprinting, so the combination with support materials could be helpful to reduce
these problems [90]. For example, the combination of alginate and biosilica resulted in being more
promising not only for the bone tissue culture formation than alginate or biosilica alone, but also for the
cell viability due to the improved extrusion process [72]. Other authors proposed the use of cylindrical
cell aggregates, composed of mouse bone marrow cells (BMSC), Schwann cells (SC) and agarose, to not
only make it easy to handle the bio-ink but also not affecting the generation of the proper post-printing
structure because of a reduction on the cell damage [91]. When the main application is regenerative
medicine and transplants, an autograft of adult stem cells, especially adipose-derived stem cells, can
be used safely to avoid the rejection process during transplantation [92].



Materials 2019, 12, 4005 13 of 20

Other improvements can be made for mechanical properties such as mechanical strength, elasticity,
and stiffness. Some of the strategies can be, for example, the cross-linking methods by exposure to
ultraviolet light, heat, and/or an ionic solution.

Figure 3. Main materials used for scaffolds bioprinting. The information is represented as
percentages (%).

Figure 4. Support materials used for scaffolds. The information is represented as percentages (%).

3. Manufacturing Parameters

3.1. Temperature of the Head and Plate

This relationship is the most uncertain, firstly because the process temperatures are mostly related
to the bioprinted materials and due to the lack of information on the temperature of the head and plate
of the 3D-Bioplotter™, among the different papers consulted.

Most of the articles only contain one of those two parameters (57.5%) and only a small portion of
the research (5%) includes all the available information to understand the possible correlation between
them. The majority of the papers report a temperature of the head and the plate around 22 ◦C while
printing alginate or methacrylated gelatin-based hydrogels in the presence of cells. A high portion of
papers gives no indications on those parameters, which have a strong relationship with the cell survival
rate in the synthesized constructs. While the temperature of the head is more related to the cells’
viability and the material properties, the temperature of the plate could be a crucial parameter because
the plate is involved in processes like physical cross-linking and the maintenance of cell viability
post-printing. The temperature information could be beneficial especially when newly developed
materials are used.



Materials 2019, 12, 4005 14 of 20

3.2. Pressure

Pressure is an important parameter to be considered, not only because every polymer has its
specific properties such as viscosity among others, but also because, when the printing is performed
with cells, they need to be maintained all of the time in the optimal conditions because a stress situation
provoked, for example, by higher pressures might be capable of altering the viability of the cells,
and reducing it, which can be a problem for the experiments that are being performed. In Table 11,
we can see some examples of different cell lines from bone and cartilage tissues, stem cells, cancer cells,
adipose tissues, Schwann cells related to the nervous system and fibroblasts, in this order.

Table 11. Some examples of different pressures applied to different cell types constructs, using a
3D-Bioplotter™ printer. All the pressures are expressed in kilopascals (kPa), to improve the comparison
between articles.

Cell Line (s) Pressure (kPa) References

BMSCs 1 30–300 [56]
Primary chondrocytes (cartilage tissue) 10 [59]

hCPCs 2 70–80 [62]
Human iPSCs 3 5 [66]

ASMCs 4 300–350 [67]
hNSCs 5 150–200 [60]
ATDC5 6 30 [58]

SaOS-2 cell line 7 90 [72,73]
21PT cell line 8 300–350 [67]

HWA 9 (+HUVEC 10) 300–350 [50]
Living Schwann cells 30 [78]
HDF 11 (+HUVEC) 100–250 [49]

Primary human dermal fibroblasts 200 [82]
1 bone marrow stromal cells. 2 human cardiac progenitor cells. 3 induced-pluripotent stem cells. 4 adipose-derived
mesenchymal stem/stromal cells. 5 human neural stem cells. 6 mouse teratocarcinoma cell line. 7 sarcoma osteogenic
cell line. 8 HER2 -positive breast tumour cell line. 9 human adipose progenitor cell line. 10 human umbilical vein
endothelial cells. 11 human dermal fibroblasts.

4. Applications of Bioprinting

The applications of bioprinting can be classified by their field, such as regenerative medicine,
material science, drug testing, and other (i.e., cellular characterization). As illustrated in Figure 5,
the main application in 3D bioprinting is regenerative medicine (37.5%). Some examples could
be those related to the production of implants for cardiac failure, audition-loss [62,69], cartilage
tissue engineering [58,93], and human neural tissue construction [7]. According to the analyzed
literature, drug tests are mainly related to the design of cellular models for clinical research.
Apropos of material science and other advanced applications, some examples are those related to
cell-compatible hydrogel synthesis [27], improvements on cell viability maintenance during bioprinting
processes [68], and the development of new materials such as a combination between lignin and
polyurethane [82]. Other examples related to the medical field, classified as other applications,
are cellular characterization [94], chemical material characterization [95], development of new
techniques [70,76], and gene characterization [77].
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Figure 5. Classification of applications for the 3D-Bioplotter™ printer. All of the available information
is classified into five categories, and the results are expressed as percentages (%).

5. Discussion

As previously mentioned, different materials and systems can be used for 3D bioprinting, and
especially for regenerative medicine. Focusing on 3D-Bioplotter™ systems, the main material used for
scaffold manufacturing is alginate, but combined with other polymers in order to improve its mechanic
and biologic properties. One of the possible improvements is the use of polyethyleneimine (PEI) as a
chemical cross-linking, in order to improve the mechanical stability of the 3D constructs [80,81].

Furthermore, 37.5% of the analyzed articles do not have clear temperature information and that is
very crucial for the maintenance of cell viability because variations of those parameters can increase
cell viability and, therefore, affect the validation of experiments in the 3D bioprinting field.

Furthermore, a new field derived from 3D bioprinting was introduced recently, called 4D
bioprinting. The main difference between 3D and 4D bioprinting is that this latest technology uses
smart materials that can re-shape in the response to external stimuli such as light, temperature, and
humidity [96]. This new technology uses the same 3D printers but with different materials, so it is an
improvement in the material science side. All the smart materials must fulfill the same properties as the
biomaterials used in 3D bioprinting, such as biocompatibility, non-inflammatory response, dynamic
and supporting physiological functions [97], non-toxicity, and with appropriate rheological properties
if needed [98].

Thus, even though 3D bioprinting was established 17 years ago, there are still some limitations
on the manufacturing processes as well as on the availability of bio-inks on the market, to mimic
more exactly the natural cell microenvironment. Further studies might be developed to improve the
fabrication of tissue-engineered scaffolds [83]. In the future, it will be necessary for the development of
high-resolution multi-material bioprinters and accurate stimulation methods to be used not only in a
regenerative medicine field but also in research in general, in order to find new biomarkers on more
diseases or disorders, and help treat them more effectively.

Author Contributions: D.A.L. and P.G. equally contributed to the paper. D.A.L. wrote the paper and P.G. revised
the style.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2019, 12, 4005 16 of 20

References

1. Gabriel, S.; Hull, C.W. Apparatus for production of three-dimensional objects by stereolithography.
U.S. Patent 4575330, 8 August 1984.

2. Melchels, F.P.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical
engineering. Biomaterials 2010, 31, 6121–6130. [CrossRef] [PubMed]

3. Lee, M.P.; Cooper, G.J.T.; Hinkley, T.; Gibson, G.M.; Padgett, M.J.; Cronin, L. Development of a 3D printer
using scanning projection stereolithography. Sci. Rep. 2015, 5, 9875. [CrossRef] [PubMed]

4. Lin, D.; Jin, S.; Zhang, F.; Wang, C.; Wang, Y.; Zhou, C.; Cheng, G.J. 3D stereolithography printing of graphene
oxide reinforced complex architectures. Nanotechnology 2015, 26, 434003. [CrossRef] [PubMed]

5. Hutmacher, D.W.; Schantz, T.; Zein, I.; Ng, K.W.; Teoh, S.H.; Tan, K.C. Mechanical properties and cell cultural
response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed.
Mater. Res. 2001, 55, 203–216. [CrossRef]

6. Hafezi, F.; Kucukgul, C.; Ozler, S.; Koc, B. Bioprinting: Application of Additive Manufacturing in Medicine.
In Additive Manufacturing; CRC Press: Boca Rato, FL, USA, 2015; pp. 197–214.

7. Gu, Q.; Hao, J.; Lu, Y.J.; Wang, L.; Wallace, G.G.; Zhou, Q. Three-dimensional bio-printing. Sci. China Life Sci.
2015, 58, 411–419. [CrossRef] [PubMed]

8. Mullen, L.; Stamp, R.C.; Brooks, W.K.; Jones, E.; Sutcliffe, C.J. Selective laser melting: A regular unit cell
approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic
applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 325–334. [CrossRef]

9. Nakamura, M.; Iwanaga, S.; Henmi, C.; Arai, K.; Nishiyama, Y. Biomatrices and biomaterials for future
developments of bioprinting and biofabrication. Biofabrication 2010, 2, 6. [CrossRef]

10. Mueller, B.; Kochan, D. Laminated object manufacturing for rapid tooling and patternmaking in foundry
industry. Comput. Ind. 1999, 39, 47–53. [CrossRef]

11. Tappa, K.; Jammalamadaka, U. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater.
2018, 9, 17. [CrossRef]

12. Cui, H.; Nowicki, M.; Fisher, J.P.; Zhang, L.G. 3D Bioprinting for Organ Regeneration. Adv. Healthc. Mater.
2017, 6. [CrossRef]

13. Huang, J.J.; Ren, J.A.; Wang, G.F.; Li, Z.A.; Wu, X.W.; Ren, H.J.; Liu, S. 3D-printed “fistula stent” designed for
management of enterocutaneous fistula: An advanced strategy. World J. Gastroenterol. 2017, 23, 7489–7494.
[CrossRef] [PubMed]

14. Horvath, L.; Umehara, Y.; Jud, C.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Engineering an in vitro
air-blood barrier by 3D bioprinting. Sci. Rep. 2015, 5, 7974. [CrossRef] [PubMed]

15. Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [CrossRef]
[PubMed]

16. Shukla, M.R.; Singh, A.S.; Piunno, K.; Saxena, P.K.; Jones, A.M.P. Application of 3D printing to prototype and
develop novel plant tissue culture systems. Plant Methods 2017, 13, 6. [CrossRef]

17. Shi, W.; He, R.; Liu, Y. 3D printing scaffolds with hydrogel materials for biomedical applications. Eur. J.
Biomed. Res. 2015, 1, 3. [CrossRef]

18. Almeida, C.R.; Serra, T.; Oliveira, M.I.; Planell, J.A.; Barbosa, M.A.; Navarro, M. Impact of 3-D printed
PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D
structures on inflammation. Acta Biomater. 2014, 10, 613–622. [CrossRef]

19. Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 2006, 5, 590. [CrossRef]
20. Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable

materials. Biotechnol. Adv. 2017, 35, 217–239. [CrossRef]
21. Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications.

Biomaterials 2003, 24, 4337–4351. [CrossRef]
22. Campbell, J.; McGuinness, I.; Wirz, H.; Sharon, A.; Sauer-Budge, A.F. Multimaterial and Multiscale

Three-Dimensional Bioprinter. J. Nanotechnol. Eng. Med. 2015, 6, 021005. [CrossRef]
23. Colosi, C.; Shin, S.R.; Manoharan, V.; Massa, S.; Costantini, M.; Barbetta, A.; Dokmeci, M.R.; Dentini, M.;

Khademhosseini, A. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity
Bioink. Adv. Mater. 2016, 28, 677–684. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.biomaterials.2010.04.050
http://www.ncbi.nlm.nih.gov/pubmed/20478613
http://dx.doi.org/10.1038/srep09875
http://www.ncbi.nlm.nih.gov/pubmed/25906401
http://dx.doi.org/10.1088/0957-4484/26/43/434003
http://www.ncbi.nlm.nih.gov/pubmed/26443263
http://dx.doi.org/10.1002/1097-4636(200105)55:2&lt;203::AID-JBM1007&gt;3.0.CO;2-7
http://dx.doi.org/10.1007/s11427-015-4850-3
http://www.ncbi.nlm.nih.gov/pubmed/25921944
http://dx.doi.org/10.1002/jbm.b.31219
http://dx.doi.org/10.1088/1758-5082/2/1/014110
http://dx.doi.org/10.1016/S0166-3615(98)00127-4
http://dx.doi.org/10.3390/jfb9010017
http://dx.doi.org/10.1002/adhm.201601118
http://dx.doi.org/10.3748/wjg.v23.i41.7489
http://www.ncbi.nlm.nih.gov/pubmed/29151703
http://dx.doi.org/10.1038/srep07974
http://www.ncbi.nlm.nih.gov/pubmed/25609567
http://dx.doi.org/10.1038/nbt.2958
http://www.ncbi.nlm.nih.gov/pubmed/25093879
http://dx.doi.org/10.1186/s13007-017-0156-8
http://dx.doi.org/10.18088/ejbmr.1.3.2015.pp3-8
http://dx.doi.org/10.1016/j.actbio.2013.10.035
http://dx.doi.org/10.1038/nmat1683
http://dx.doi.org/10.1016/j.biotechadv.2016.12.006
http://dx.doi.org/10.1016/S0142-9612(03)00340-5
http://dx.doi.org/10.1115/1.4031230
http://dx.doi.org/10.1002/adma.201503310
http://www.ncbi.nlm.nih.gov/pubmed/26606883


Materials 2019, 12, 4005 17 of 20

24. Vukicevic, M.; Mosadegh, B.; Min, J.K.; Little, S.H. Cardiac 3D Printing and its Future Directions. JACC
Cardiovasc. Imaging 2017, 10, 171–184. [CrossRef] [PubMed]

25. Zhang, Y.S.; Yue, K.; Aleman, J.; Mollazadeh-Moghaddam, K.; Bakht, S.M.; Yang, J.; Jia, W.; Dell’Erba, V.;
Assawes, P.; Shin, S.R.; et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed. Eng. 2017, 45,
148–163. [CrossRef] [PubMed]

26. Blaeser, A.; Duarte Campos, D.F.; Puster, U.; Richtering, W.; Stevens, M.M.; Fischer, H. Controlling Shear
Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc.
Mater. 2016, 5, 326–333. [CrossRef]

27. Jakus, A.E.; Rutz, A.L.; Shah, R.N. Advancing the field of 3D biomaterial printing. Biomed. Mater. 2016,
11, 014102. [CrossRef]

28. Skardal, A.; Atala, A. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 2015, 43, 730–746.
[CrossRef]

29. Chung, J.H.Y.; Naficy, S.; Yue, Z.; Kapsa, R.; Quigley, A.; Moulton, S.E.; Wallace, G.G. Bio-ink properties and
printability for extrusion printing living cells. Biomater. Sci. 2013, 1, 763–773. [CrossRef]

30. De Santis, R.; Gloria, A.; Russo, T.; D’Amora, U.; D’Antò, V.; Bollino, F.; Catauro, M.; Mollica, F.; Rengo, S.;
Ambrosio, L. Advanced composites for hard-tissue engineering based on PCL/organic-inorganic hybrid
fillers: From the design of 2D substrates to 3D rapid prototyped scaffolds. Polym. Compos. 2013, 34, 1413–1417.
[CrossRef]

31. Gurkan, U.A.; Tasoglu, S.; Kavaz, D.; Demirel, M.C.; Demirci, U. Emerging technologies for assembly of
microscale hydrogels. Adv. Healthc. Mater. 2012, 1, 149–158. [CrossRef]

32. Puppi, D.; Mota, C.; Gazzarri, M.; Dinucci, D.; Gloria, A.; Myrzabekova, M.; Ambrosio, L.; Chiellini, F.
Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed. Microdevices
2012, 14, 1115–1127. [CrossRef]

33. Guvendiren, M.; Burdick, J.A. Engineering synthetic hydrogel microenvironments to instruct stem cells.
Curr. Opin. Biotechnol. 2013, 24, 841–846. [CrossRef] [PubMed]

34. Malda, J.; Visser, J.; Melchels, F.P.; Jüngst, T.; Hennink, W.E.; Dhert, W.J.A.; Groll, J.; Hutmacher, D.W. 25th
anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 2013, 25, 5011–5028. [CrossRef]
[PubMed]

35. Hunt, N.C.; Grover, L.M. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol.
Lett. 2010, 32, 733–742. [CrossRef] [PubMed]

36. Walters, B.D.; Stegemann, J.P. Strategies for directing the structure and function of three-dimensional collagen
biomaterials across length scales. Acta Biomater. 2014, 10, 1488–1501. [CrossRef] [PubMed]

37. Tasoglu, S.; Diller, E.; Guven, S.; Sitti, M.; Demirci, U. Untethered micro-robotic coding of three-dimensional
material composition. Nat. Commun. 2014, 5, 3124. [CrossRef] [PubMed]

38. Bonino, C.A.; Efimenko, K.; Jeong, S.I.; Krebs, M.D.; Alsberg, E.; Khan, S.A. Three-dimensional electrospun
alginate nanofiber mats via tailored charge repulsions. Small 2012, 8, 1928–1936. [CrossRef]

39. Jeon, O.; Alsberg, E. Photofunctionalization of Alginate Hydrogels to Promote Adhesion and Proliferation of
Human Mesenchymal Stem Cells. Tissue Eng. Part A 2013, 19, 1424–1432. [CrossRef]

40. Kleinman, H.K.; Martin, G.R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer
Biol. 2005, 15, 378–386. [CrossRef]

41. Enam, S. Substrates for clinical applicability of stem cells. World J. Stem Cells 2015, 7, 243–252. [CrossRef]
42. Poldervaart, M.T.; Gremmels, H.; Van Deventer, K.; Fledderus, J.O.; Öner, F.C.; Verhaar, M.C.; Dhert, W.J.A.;

Alblas, J. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined
architecture. J. Control. Release 2014, 184, 58–66. [CrossRef]

43. Bourgine, P.E.; Scotti, C.; Pigeot, S.; Tchang, L.A.; Todorov, A.; Martin, I. Osteoinductivity of engineered
cartilaginous templates devitalized by inducible apoptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 17426–17431.
[CrossRef] [PubMed]

44. Tasoglu, S.; Kavaz, D.; Gurkan, U.A.; Guven, S.; Chen, P.; Zheng, R.; Demirci, U. Paramagnetic levitational
assembly of hydrogels. Adv. Mater. 2013, 25, 1137–1143. [CrossRef] [PubMed]

45. Yang, X.; Sarvestani, S.K.; Moeinzadeh, S.; He, X.; Jabbari, E. Three-Dimensional-Engineered Matrix to Study
Cancer Stem Cells and Tumorsphere Formation: Effect of Matrix Modulus. Tissue Eng. Part A 2013, 19,
669–684. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jcmg.2016.12.001
http://www.ncbi.nlm.nih.gov/pubmed/28183437
http://dx.doi.org/10.1007/s10439-016-1612-8
http://www.ncbi.nlm.nih.gov/pubmed/27126775
http://dx.doi.org/10.1002/adhm.201500677
http://dx.doi.org/10.1088/1748-6041/11/1/014102
http://dx.doi.org/10.1007/s10439-014-1207-1
http://dx.doi.org/10.1039/c3bm00012e
http://dx.doi.org/10.1002/pc.22446
http://dx.doi.org/10.1002/adhm.201200011
http://dx.doi.org/10.1007/s10544-012-9677-0
http://dx.doi.org/10.1016/j.copbio.2013.03.009
http://www.ncbi.nlm.nih.gov/pubmed/23545441
http://dx.doi.org/10.1002/adma.201302042
http://www.ncbi.nlm.nih.gov/pubmed/24038336
http://dx.doi.org/10.1007/s10529-010-0221-0
http://www.ncbi.nlm.nih.gov/pubmed/20155383
http://dx.doi.org/10.1016/j.actbio.2013.08.038
http://www.ncbi.nlm.nih.gov/pubmed/24012608
http://dx.doi.org/10.1038/ncomms4124
http://www.ncbi.nlm.nih.gov/pubmed/24469115
http://dx.doi.org/10.1002/smll.201101791
http://dx.doi.org/10.1089/ten.tea.2012.0581
http://dx.doi.org/10.1016/j.semcancer.2005.05.004
http://dx.doi.org/10.4252/wjsc.v7.i2.243
http://dx.doi.org/10.1016/j.jconrel.2014.04.007
http://dx.doi.org/10.1073/pnas.1411975111
http://www.ncbi.nlm.nih.gov/pubmed/25422415
http://dx.doi.org/10.1002/adma.201200285
http://www.ncbi.nlm.nih.gov/pubmed/23288557
http://dx.doi.org/10.1089/ten.tea.2012.0333
http://www.ncbi.nlm.nih.gov/pubmed/23013450


Materials 2019, 12, 4005 18 of 20

46. Leung, G.K.K.; Wang, Y.C.; Wu, W. Peptide nanofiber scaffold for brain tissue reconstruction. In Methods in
Enzymology; Academic Press: Cambridge, MA, USA, 2012; Volume 508, pp. 177–190.

47. Cui, X.; Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials
2009, 30, 6221–6227. [CrossRef]

48. Miller, J.S.; Stevens, K.R.; Yang, M.T.; Baker, B.M.; Nguyen, D.H.T.; Cohen, D.M.; Toro, E.; Chen, A.A.;
Galie, P.A.; Yu, X.; et al. Rapid casting of patterned vascular networks for perfusable engineered
three-dimensional tissues. Nat. Mater. 2012, 11, 768–774. [CrossRef]

49. Rutz, A.L.; Hyland, K.E.; Jakus, A.E.; Burghardt, W.R.; Shah, R.N. A multimaterial bioink method for 3D
printing tunable, cell-compatible hydrogels. Adv. Mater. 2015, 27, 1607–1614. [CrossRef]

50. Qi, D.; Wu, S.; Kuss, M.A.; Shi, W.; Chung, S.; Deegan, P.T.; Kamenskiy, A.; He, Y.; Duan, B. Mechanically
robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomater.
2018, 74, 131–142. [CrossRef]

51. Cui, X.; Breitenkamp, K.; Finn, M.G.; Lotz, M.; D’Lima, D.D. Direct Human Cartilage Repair Using
Three-Dimensional Bioprinting Technology. Tissue Eng. Part A 2012, 18, 1304–1312. [CrossRef]

52. Kundu, J.; Shim, J.H.; Jang, J.; Kim, S.W.; Cho, D.W. An additive manufacturing-based
PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med.
2015, 9, 1286–1297. [CrossRef]

53. Esposito, A.R.; Moda, M.; Cattani, S.M.; de Santana, G.M.; Barbieri, J.A.; Munhoz, M.M.; Cardoso, T.P.;
Barbo, M.L.P.; Russo, T.; D’Amora, U.; et al. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering. Biores.
Open Access 2013, 2, 138–147. [CrossRef]

54. Calandrelli, L.; Immirzi, B.; Malinconico, M.; Luessenheide, S.; Passaro, I.; Di Pasquale, R.; Oliva, A. Natural
and synthetic hydroxyapatite filled PCL: Mechanical properties and biocompatibility analysis. In Proceedings
of the Journal of Bioactive and Compatible Polymers; SAGE PublicationsSage UK: London, UK, 2004; Volume 19,
pp. 301–313.

55. Catros, S.; Fricain, J.C.; Guillotin, B.; Pippenger, B.; Bareille, R.; Remy, M.; Lebraud, E.; Desbat, B.; Amédée, J.;
Guillemot, F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and
nano-hydroxyapatite. Biofabrication 2011, 3, 025001. [CrossRef] [PubMed]

56. Fedorovich, N.E.; De Wijn, J.R.; Verbout, A.J.; Alblas, J.; Dhert, W.J.A. Three-dimensional fiber deposition
of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 2008, 14, 127–133.
[CrossRef] [PubMed]

57. Kuss, M.A.; Harms, R.; Wu, S.; Wang, Y.; Untrauer, J.B.; Carlson, M.A.; Duan, B. Short-term hypoxic
preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction
derived cells. RSC Adv. 2017, 7, 29312–29320. [CrossRef] [PubMed]

58. You, F.; Wu, X.; Zhu, N.; Lei, M.; Eames, B.F.; Chen, X. 3D Printing of Porous Cell-Laden Hydrogel Constructs
for Potential Applications in Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2016, 2, 1200–1210.
[CrossRef]

59. You, F.; Chen, X.; Cooper, D.M.L.; Chang, T.; Eames, B.F. Homogeneous hydroxyapatite/alginate composite
hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting.
Biofabrication 2019, 11, 015015. [CrossRef] [PubMed]

60. Gu, Q.; Tomaskovic-Crook, E.; Wallace, G.G.; Crook, J.M. Engineering human neural tissue by 3D bioprinting.
Methods Mol. Biol. 2018, 1758, 129–138.

61. Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C.L.; Kachurin, A.; Church, K.H.;
Park, H.; Mironov, V.; et al. Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined
Structures. Tissue Eng. Part A 2008, 14, 413–421. [CrossRef]

62. Bejleri, D.; Streeter, B.W.; Nachlas, A.L.Y.; Brown, M.E.; Gaetani, R.; Christman, K.L.; Davis, M.E. A Bioprinted
Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair. Adv.
Healthc. Mater. 2018, 7, 1–13. [CrossRef]

63. Izadifar, M.; Chapman, D.; Babyn, P.; Chen, X.; Kelly, M.E. UV-Assisted 3D Bioprinting of Nanoreinforced
Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Eng. Part C Methods 2018, 24, 74–88.
[CrossRef]

64. Visk, D. Will Advances in Preclinical In Vitro Models Lower the Costs of Drug Development? Appl. Vitr.
Toxicol. 2015, 1, 79–82. [CrossRef]

http://dx.doi.org/10.1016/j.biomaterials.2009.07.056
http://dx.doi.org/10.1038/nmat3357
http://dx.doi.org/10.1002/adma.201405076
http://dx.doi.org/10.1016/j.actbio.2018.05.044
http://dx.doi.org/10.1089/ten.tea.2011.0543
http://dx.doi.org/10.1002/term.1682
http://dx.doi.org/10.1089/biores.2012.0293
http://dx.doi.org/10.1088/1758-5082/3/2/025001
http://www.ncbi.nlm.nih.gov/pubmed/21527813
http://dx.doi.org/10.1089/ten.a.2007.0158
http://www.ncbi.nlm.nih.gov/pubmed/18333811
http://dx.doi.org/10.1039/C7RA04372D
http://www.ncbi.nlm.nih.gov/pubmed/28670447
http://dx.doi.org/10.1021/acsbiomaterials.6b00258
http://dx.doi.org/10.1088/1758-5090/aaf44a
http://www.ncbi.nlm.nih.gov/pubmed/30524110
http://dx.doi.org/10.1089/tea.2007.0173
http://dx.doi.org/10.1002/adhm.201800672
http://dx.doi.org/10.1089/ten.tec.2017.0346
http://dx.doi.org/10.1089/aivt.2015.1503


Materials 2019, 12, 4005 19 of 20

65. Lewis, P.L.; Yan, M.; Su, J.; Shah, R.N. Directing the growth and alignment of biliary epithelium within
extracellular matrix hydrogels. Acta Biomater. 2019, 85, 84–93. [CrossRef] [PubMed]

66. Gu, Q.; Tomaskovic-Crook, E.; Wallace, G.G.; Crook, J.M. 3D Bioprinting Human Induced Pluripotent Stem
Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Adv. Healthc. Mater.
2017, 6, 1–11. [CrossRef] [PubMed]

67. Wang, Y.; Shi, W.; Kuss, M.; Mirza, S.; Qi, D.; Krasnoslobodtsev, A.; Zeng, J.; Band, H.; Band, V.; Duan, B. 3D
Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomater. Sci. Eng. 2018, 4, 4401–4411.
[CrossRef]

68. Narayanan, L.K.; Huebner, P.; Fisher, M.B.; Spang, J.T.; Starly, B.; Shirwaiker, R.A. 3D-Bioprinting of Polylactic
Acid (PLA) Nanofiber-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells. ACS
Biomater. Sci. Eng. 2016, 2, 1732–1742. [CrossRef]

69. Kuo, C.-Y.; Wilson, E.; Fuson, A.; Gandhi, N.; Monfaredi, R.; Jenkins, A.; Romero, M.; Santoro, M.; Fisher, J.P.;
Cleary, K.; et al. Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using
Chinchilla Models. Tissue Eng. Part A 2018, 24, 527–535. [CrossRef]

70. Tang, Q.; Piard, C.; Lin, J.; Nan, K.; Guo, T.; Caccamese, J.; Fisher, J.; Chen, Y. Imaging stem cell distribution,
growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic
fluorescence tomography. Biotechnol. Bioeng. 2018, 115, 257–265. [CrossRef]

71. Yu, H.-Y.; Ma, D.-D.; Wu, B.-L. Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes
cell adhesion and proliferation of human dental pulp cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2017, 37,
668–672.

72. Wang, X.; Tolba, E.; Der, H.C.S.; Neufurth, M.; Feng, Q.; Diehl-Seifert, B.R.; Mü Ller, W.E.G. Effect of bioglass
on growth and biomineralization of saos-2 cells in hydrogel after 3d cell bioprinting. PLoS ONE 2014, 9, 1–7.
[CrossRef]

73. Neufurth, M.; Wang, X.; Schröder, H.C.; Feng, Q.; Diehl-Seifert, B.; Ziebart, T.; Steffen, R.; Wang, S.;
Müller, W.E.G. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived
from human osteoblast-like SaOS-2 cells. Biomaterials 2014, 35, 8810–8819. [CrossRef]

74. Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. The 3D printing of gelatin methacrylamide
cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014, 35, 49–62. [CrossRef]

75. Rajaram, A.; Schreyer, D.J.; Chen, D.X.B. Use of the polycation polyethyleneimine to improve the physical
properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. J. Biomater. Sci.
Polym. Ed. 2015, 26, 433–445. [CrossRef] [PubMed]

76. Olubamiji, A.D.; Izadifar, Z.; Zhu, N.; Chang, T.; Chen, X.; Eames, B.F. Using synchrotron radiation inline
phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for
cartilage tissue engineering. J. Synchrotron Radiat. 2016, 23, 802–812. [CrossRef] [PubMed]

77. DaSilva-Arnold, S.; Kuo, C.; Davra, V.; Remache, Y.; Cw, P.; Fisher, J.P.; Zamudio, S.; Al-khan, A.; Birge, R.B.;
Nicholas, P. ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast
differentiation. Mol. Hum. Reprod. 2019, 25, 61–75. [CrossRef] [PubMed]

78. Ning, L.; Sun, H.; Lelong, T.; Guilloteau, R.; Zhu, N.; Schreyere, D.J.; Chen, X. 3D bioprinting of scaffolds
with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 2019, 10, 035014.
[CrossRef]

79. Sarker, M.D.; Naghieh, S.; McInnes, A.D.; Ning, L.; Schreyer, D.J.; Chen, X. Bio-fabrication of peptide-modified
alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments. Bioprinting 2019, 14,
e00045. [CrossRef]

80. Rajaram, A.; Schreyer, D.J.; Chen, X. Development of Schwann Cell-Encapsulated Alginate Scaffolds for the
Repair of Peripheral Nerve Injury. CMBES 2012, 35, 3–6.

81. Rajaram, A.; Schreyer, D.; Chen, D. Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural
Integrity and Preserved Schwann Cell Viability. 3D Print. Addit. Manuf. 2016, 1, 194–203. [CrossRef]

82. Oveissi, F.; Naficy, S.; Le, T.Y.L.; Fletcher, D.F.; Dehghani, F. Tough and Processable Hydrogels Based on
Lignin and Hydrophilic Polyurethane. ACS Appl. Bio Mater. 2018, 1, 2073–2081. [CrossRef]

83. Shi, Y.; Xing, T.L.; Zhang, H.B.; Yin, R.X.; Yang, S.M.; Wei, J.; Zhang, W.J. Tyrosinase-doped bioink for 3D
bioprinting of living skin constructs. Biomed. Mater. 2018, 13, 035008. [CrossRef]

84. Axpe, E.; Oyen, M.L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 2016, 17, 1976.
[CrossRef]

http://dx.doi.org/10.1016/j.actbio.2018.12.039
http://www.ncbi.nlm.nih.gov/pubmed/30590182
http://dx.doi.org/10.1002/adhm.201700175
http://www.ncbi.nlm.nih.gov/pubmed/28544655
http://dx.doi.org/10.1021/acsbiomaterials.8b01277
http://dx.doi.org/10.1021/acsbiomaterials.6b00196
http://dx.doi.org/10.1089/ten.tea.2017.0246
http://dx.doi.org/10.1002/bit.26452
http://dx.doi.org/10.1371/journal.pone.0112497
http://dx.doi.org/10.1016/j.biomaterials.2014.07.002
http://dx.doi.org/10.1016/j.biomaterials.2013.09.078
http://dx.doi.org/10.1080/09205063.2015.1016383
http://www.ncbi.nlm.nih.gov/pubmed/25661399
http://dx.doi.org/10.1107/S1600577516002344
http://www.ncbi.nlm.nih.gov/pubmed/27140161
http://dx.doi.org/10.1093/molehr/gay053
http://www.ncbi.nlm.nih.gov/pubmed/30462321
http://dx.doi.org/10.1088/1758-5090/aacd30
http://dx.doi.org/10.1016/j.bprint.2019.e00045
http://dx.doi.org/10.1089/3dp.2014.0006
http://dx.doi.org/10.1021/acsabm.8b00546
http://dx.doi.org/10.1088/1748-605X/aaa5b6
http://dx.doi.org/10.3390/ijms17121976


Materials 2019, 12, 4005 20 of 20

85. Jia, J.; Richards, D.J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R.P.; Trusk, T.C.; Yost, M.J.; Yao, H.;
Markwald, R.R.; et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014, 10, 4323–4331.
[CrossRef] [PubMed]

86. Cuadros, T.R.; Erices, A.A.; Aguilera, J.M. Porous matrix of calcium alginate/gelatin with enhanced properties
as scaffold for cell culture. J. Mech. Behav. Biomed. Mater. 2015, 46, 331–342. [CrossRef] [PubMed]

87. Kulseng, B.; Skjåk-Braek, G.; Ryan, L.; Andersson, A.; King, A.; Faxvaag, A.; Espevik, T. Transplantation of
alginate microcapsules: Generation of antibodies against alginates and encapsulated porcine islet-like cell
clusters. Transplantation 1999, 67, 978–984. [CrossRef] [PubMed]

88. Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications.
Biomaterials 2012, 33, 3279–3305. [CrossRef] [PubMed]

89. Schuurman, W.; Levett, P.A.; Pot, M.W.; van Weeren, P.R.; Dhert, W.J.A.; Hutmacher, D.W.; Melchels, F.P.W.;
Klein, T.J.; Malda, J. Gelatin-Methacrylamide Hydrogels as Potential Biomaterials for Fabrication of
Tissue-Engineered Cartilage Constructs. Macromol. Biosci. 2013, 13, 551–561. [CrossRef] [PubMed]

90. Derby, B. Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures. J. Mater.
Chem. 2008, 18, 5717–5721. [CrossRef]

91. Owens, C.M.; Marga, F.; Forgacs, G.; Heesch, C.M. Biofabrication and testing of a fully cellular nerve graft.
Biofabrication 2013, 5, 045007. [CrossRef]

92. Larocca, R.A.; Moraes-Vieira, P.M.; Bassi, Ê.J.; Semedo, P.; de Almeida, D.C.; da Silva, M.B.; Thornley, T.;
Pacheco-Silva, A.; Câmara, N.O.S. Adipose Tissue-Derived Mesenchymal Stem Cells Increase Skin Allograft
Survival and Inhibit Th-17 Immune Response. PLoS ONE 2013, 8, e76396. [CrossRef]

93. Izadifar, Z.; Chang, T.; Kulyk, W.; Chen, X.; Eames, B.F. Analyzing Biological Performance of 3D-Printed,
Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2015, 22,
173–188. [CrossRef]

94. Ning, L.; Betancourt, N.; Schreyer, D.J.; Chen, X. Characterization of Cell Damage and Proliferative Ability
during and after Bioprinting. ACS Biomater. Sci. Eng. 2018, 4, 3906–3918. [CrossRef]

95. Nair, K.; Gandhi, M.; Khalil, S.; Yan, K.C.; Marcolongo, M.; Barbee, K.; Sun, W. Characterization of cell
viability during bioprinting processes. Biotechnol. J. 2009, 4, 1168–1177. [CrossRef] [PubMed]

96. Kwok, T.-H.; Wang, C.C.L.; Deng, D.; Zhang, Y.; Chen, Y. Four-Dimensional Printing for Freeform Surfaces:
Design Optimization of Origami and Kirigami Structures. J. Mech. Des. 2015, 137, 111413. [CrossRef]

97. Castro, N.J.; Meinert, C.; Levett, P.; Hutmacher, D.W. Current developments in multifunctional smart
materials for 3D/4D bioprinting. Curr. Opin. Biomed. Eng. 2017, 2, 67–75. [CrossRef]

98. Yang, G.H.; Yeo, M.; Koo, Y.W.; Kim, G.H. 4D Bioprinting: Technological Advances in Biofabrication.
Macromol. Biosci. 2019, 19, 1–10. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.actbio.2014.06.034
http://www.ncbi.nlm.nih.gov/pubmed/24998183
http://dx.doi.org/10.1016/j.jmbbm.2014.08.026
http://www.ncbi.nlm.nih.gov/pubmed/25661688
http://dx.doi.org/10.1097/00007890-199904150-00008
http://www.ncbi.nlm.nih.gov/pubmed/10221481
http://dx.doi.org/10.1016/j.biomaterials.2012.01.007
http://www.ncbi.nlm.nih.gov/pubmed/22281421
http://dx.doi.org/10.1002/mabi.201200471
http://www.ncbi.nlm.nih.gov/pubmed/23420700
http://dx.doi.org/10.1039/b807560c
http://dx.doi.org/10.1088/1758-5082/5/4/045007
http://dx.doi.org/10.1371/journal.pone.0076396
http://dx.doi.org/10.1089/ten.tec.2015.0307
http://dx.doi.org/10.1021/acsbiomaterials.8b00714
http://dx.doi.org/10.1002/biot.200900004
http://www.ncbi.nlm.nih.gov/pubmed/19507149
http://dx.doi.org/10.1115/1.4031023
http://dx.doi.org/10.1016/j.cobme.2017.04.002
http://dx.doi.org/10.1002/mabi.201800441
http://www.ncbi.nlm.nih.gov/pubmed/30821919
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials for Bioprinting 
	Polymers 
	Natural Polymers 
	Synthetic Polymers 

	Cross-Linking Methods 
	Cellular Typologies 
	Vascular Tissues 
	Cartilage and Bone-Like Structures 
	Cardiac Tissues 
	Liver Tissues 
	Stem Cells 
	Cancer Cells 
	Adipose Tissues 
	Muscle Cells 
	Schwann Cells 
	Skin Tissues 

	General Summary 

	Manufacturing Parameters 
	Temperature of the Head and Plate 
	Pressure 

	Applications of Bioprinting 
	Discussion 
	References

