6,952 research outputs found
Resonant Subband Landau Level Coupling in Symmetric Quantum Well
Subband structure and depolarization shifts in an ultra-high mobility
GaAs/Al_{0.24}Ga_{0.76}As quantum well are studied using magneto-infrared
spectroscopy via resonant subband Landau level coupling. Resonant couplings
between the 1st and up to the 4th subbands are identified by well-separated
anti-level-crossing split resonance, while the hy-lying subbands were
identified by the cyclotron resonance linewidth broadening in the literature.
In addition, a forbidden intersubband transition (1st to 3rd) has been
observed. With the precise determination of the subband structure, we find that
the depolarization shift can be well described by the semiclassical slab plasma
model, and the possible origins for the forbidden transition are discussed.Comment: 4 pages, 2 figure
Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists
It has now been demonstrated that the μ, δ(1), δ(2), and κ(1) opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct‐reducing effect with prophylactic administration and prevent reperfusion‐induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia‐induced arrhythmias
Testing and comparing two self-care-related instruments among older Chinese adults
Objectives The study aimed to test and compare the reliability and validity, including sensitivity and specificity of the two self-care-related instruments, the Self-care Ability Scale for the Elderly (SASE), and the Appraisal of Self-care Agency Scale-Revised (ASAS-R), among older adults in the Chinese context. Methods A cross-sectional design was used to conduct this study. The sample consisted of 1152 older adults. Data were collected by a questionnaire including the Chinese version of SASE (SASE-CHI), the Chinese version of ASAS-R (ASAS-R-CHI) and the Exercise of Self-Care Agency scale (ESCA). Homogeneity and stability, content, construct and concurrent validity, and sensitivity and specificity were assessed. Results The Cronbach's alpha (α) of SASE-CHI was 0.89, the item-to-total correlations ranged from r = 0.15 to r = 0.81, and the test-retest correlation coefficient (intra-class correlation coefficient, ICC) was 0.99 (95% CI, 0.99±1.00; P<0.001). The Cronbach's α of ASAS-R-CHI was 0.78, the item-to-total correlations ranged from r = 0.20 to r = 0.65, and the test-retest ICC was 0.95 (95% CI, 0.92±0.96; P<0.001). The content validity index (CVI) of SASE-CHI and ASAS-R-CHI was 0.96 and 0.97, respectively. The findings of exploratory and confirmatory factor analyses (EFA and CFA) confirmed a good construct validity of SASE-CHI and ASAS-R-CHI. The Pearson's rank correlation coefficients, as a measure of concurrent validity, between total score of SASE-CHI and ESCA and ASAS-R-CHI and ESCA were assessed to 0.65 (P<0.001) and 0.62 (P<0.001), respectively. Regarding ESCA as the criterion, the area under the receiver operator characteristic (ROC) curve for the cut-point of SASE-CHI and ASAS-R-CHI were 0.93 (95% CI, 0.91±0.94) and 0.83 (95% CI, 0.80±0.86), respectively. Conclusion There is no significant difference between the two instruments. Each has its own characteristics, but SASE-CHI is more suitable for older adults. The key point is that the users can choose the most appropriate scale according to the specific situation.publishedVersionNivå
Biomimetic intrafibrillar mineralization of type I collagen with intermediate precursors-loaded mesoporous carriers
published_or_final_versio
Quantum gravity effects on statistics and compact star configurations
The thermodynamics of classical and quantum ideal gases based on the
Generalized uncertainty principle (GUP) are investigated. At low temperatures,
we calculate corrections to the energy and entropy. The equations of state
receive small modifications. We study a system comprised of a zero temperature
ultra-relativistic Fermi gas. It turns out that at low Fermi energy
, the degenerate pressure and energy are lifted. The
Chandrasekhar limit receives a small positive correction. We discuss the
applications on configurations of compact stars. As increases,
the radius, total number of fermions and mass first reach their nonvanishing
minima and then diverge. Beyond a critical Fermi energy, the radius of a
compact star becomes smaller than the Schwarzschild one. The stability of the
configurations is also addressed. We find that beyond another critical value of
the Fermi energy, the configurations are stable. At large radius, the increment
of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17
pages, 2 figures, typos corrected, version to appear in JHE
Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
Survival benefit of a monoclonal antibody against cadherin-17 in an orthotopic liver tumor xenograft model
published_or_final_versio
Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology
The pseudogap: friend or foe of high Tc?
Although nineteen years have passed since the discovery of high temperature
superconductivity, there is still no consensus on its physical origin. This is
in large part because of a lack of understanding of the state of matter out of
which the superconductivity arises. In optimally and underdoped materials, this
state exhibits a pseudogap at temperatures large compared to the
superconducting transition temperature. Although discovered only three years
after the pioneering work of Bednorz and Muller, the physical origin of this
pseudogap behavior and whether it constitutes a distinct phase of matter is
still shrouded in mystery. In the summer of 2004, a band of physicists gathered
for five weeks at the Aspen Center for Physics to discuss the pseudogap. In
this perspective, we would like to summarize some of the results presented
there and discuss its importance in the context of strongly correlated electron
systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in
Physic
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
- …
