118 research outputs found

    On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering

    Full text link
    We study the dipole picture of high-energy virtual-photon-proton scattering. It is shown that different choices for the energy variable in the dipole cross section used in the literature are not related to each other by simple arguments equating the typical dipole size and the inverse photon virtuality, contrary to what is often stated. We argue that the good quality of fits to structure functions that use Bjorken-x as the energy variable - which is strictly speaking not justified in the dipole picture - can instead be understood as a consequence of the sign of scaling violations that occur for increasing Q^2 at fixed small x. We show that the dipole formula for massless quarks has the structure of a convolution. From this we obtain derivative relations between the structure function F_2 at large and small Q^2 and the dipole-proton cross section at small and large dipole size r, respectively.Comment: 27 page

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    No evidence for association between tau gene haplotypic variants and susceptibility to Creutzfeldt-Jakob disease

    Get PDF
    Contains fulltext : 52965.pdf ( ) (Open Access)BACKGROUND: A polymorphism at codon 129 of the prion protein gene (PRNP) is the only well-known genetic risk factor for Creutzfeldt-Jakob disease (CJD). However, there is increasing evidence that other loci outside the PRNP open reading frame might play a role in CJD aetiology as well. METHODS: We studied tau protein gene (MAPT) haplotypic variations in a population of sporadic and variant CJD patients. We tested 6 MAPT haplotype tagging SNPs (htSNPs) in a Dutch population-based sample of sporadic CJD (sCJD) patients and a cognitively normal control group of similar age distribution. We genotyped the same polymorphisms in two other sample groups of sCJD cases from Italy and the UK. In addition, we compared MAPT haplotypes between sCJD and variant CJD (vCJD) patients. RESULTS: Single locus and haplotype analyses did not detect any significant difference between sCJD cases and controls. When we compared MAPT haplotypes between sCJD and variant CJD (vCJD) patients, we found that two of them were represented differently (H1f: 8% in sCJD versus 2% in vCJD; H1j:1% in sCJD versus 7% in vCJD). However, these two haplotypes were rare in both groups of patients, and taking the small sample sizes into account, we cannot exclude that the differences are due to chance. None of the p-values remained statistically significant after applying a multiple testing correction. CONCLUSION: Our study shows no evidence for an association between MAPT gene variations and sCJD, and some weak evidence for an association to vCJD

    Analysis of Gene Expression in Resynthesized Brassica napus Allopolyploids Using Arabidopsis 70mer Oligo Microarrays

    Get PDF
    Background Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S5:6) alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. Methodology/Principal Findings We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S0:1 and S5:6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent) expression in the allopolyploids were tested. The S5:6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6–15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6–32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S0:1lines and 0.1–0.2% were nonadditive among all S5:6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S5:6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S0:1 lines. Conclusions/Significance Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization. Furthermore, our microarray analysis did not provide strong evidence that homoeologous rearrangements were a determinant of genome-wide nonadditive gene expression. In light of the inherent limitations of the Arabidopsis microarray to measure gene expression in polyploid Brassicas, further studies are warranted

    The economics of debt clearing mechanisms

    Get PDF
    We examine the evolution of decentralized clearinghouse mechanisms from the 13th to the 18th century; in particular, we explore the clearing of non- or limitedtradable debts like bills of exchange. We construct a theoretical model of these clearinghouse mechanisms, similar to the models in the theoretical matching literature, and show that specific decentralized multilateral clearing algorithms known as rescontre, skontrieren or virement des parties used by merchants were efficient in specific historical contexts. We can explain both the evolutionary self-organizing emergence of late medieval and early modern fairs, and its robustness during the 17th and 18th century

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Attribution of typhoons-induced torrential precipitation in Central Vietnam, October 2020

    Get PDF
    In October 2020, Central Vietnam was struck by heavy rain resulting from a sequence of 5 tropical depressions and typhoons. The immense amount of water led to extensive flooding and landslides that killed more than 200 people, injured more than 500 people and caused direct damages valued at approximately 1.2 billion USD. Here, we quantify how the intensity of the precipitation leading to such exceptional impacts is attributable to anthropogenic climate change. First, we define the event as the regional maximum of annual maximum 15-day average rainfall (Rx15day). We then analyse the trend in Rx15day over Central Vietnam from observations and simulations in the PRIMAVERA and CORDEX-CORE ensembles, which pass our evaluation tests, by applying the Generalized Extreme Value (GEV) distribution in which location and scale parameters exponentially co-vary with increasing global temperatures. Combining these observations and model results, we find that the 2020 event, occurring about once every 80 years (at least 17 years), has not changed in either probability of occurrence (a factor 1.0, ranging from 0.4 to 2.4) or intensity (0%, ranging from −8% to +8%) in the present climate in comparison with early-industrial climate. This implies that the effect of human-induced climate change contributing to this persistent extreme rainfall event is small compared to natural variability. However, given the scale of damage of this hazard, our results underline that more investment in disaster risk reduction for this type of rainfall-induced flood hazard is of importance, even independent of the effect of anthropogenic climate change. Moreover, as both observations and model simulations will be extended with the passage of time, we encourage more climate change impact investigations on the extreme in the future that help adaptation and mitigation plans and raise awareness in the country
    corecore