3,354 research outputs found

    Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model

    Full text link
    We analytically compute the dominant contributions to the \beta-functions for the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as well as the anomalous dimensions of the scalar, gluon and quark fields in the unbroken phase of the Standard Model at three-loop level. These are mainly the QCD and top-Yukawa corrections. The contributions from the Higgs self-interaction which are negligible for the running of the top-Yukawa and the strong coupling but important for the running of the Higgs self-coupling are also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are improved. Results in computer readable form can be retrieved from http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Candida albicans repetitive elements display epigenetic diversity and plasticity

    Get PDF
    Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    A comparison of course-related stressors in undergraduate problem-based learning (PBL) versus non-PBL medical programmes

    Get PDF
    Background: Medical students report high levels of stress related to their medical training as well as to other personal and financial factors. The aim of this study is to investigate whether there are differences in course-related stressors reported by medical students on undergraduate problem-based learning (PBL) and non-PBL programmes in the UK. Method: A cross-sectional study of second-year medical students in two UK medical schools (one PBL and one non-PBL programme) was conducted. A 16-question self-report questionnaire, derived from the Perceived Medical Student Stress Scale and the Higher Education Stress Inventory, was used to measure course-related stressors. Following univariate analysis of each stressor between groups, multivariate logistic regression was used to determine which stressors were the best predictors of each course type, while controlling for socio-demographic differences between the groups. Results: A total of 280 students responded. Compared to the non-PBL students (N = 197), the PBL students (N = 83) were significantly more likely to agree that: they did not know what the faculty expected of them (Odds Ratio (OR) = 0.38, p = 0.03); there were too many small group sessions facilitated only by students resulting in an unclear curriculum (OR = 0.04, p < 0.0001); and that there was a lack of opportunity to explore academic subjects of interest (OR = 0.40, p = 0.02). They were significantly more likely to disagree that: there was a lack of encouragement from teachers (OR = 3.11, p = 0.02); and that the medical course fostered a sense of anonymity and feelings of isolation amongst students (OR = 3.42, p = 0.008). Conclusion: There are significant differences in the perceived course-related stressors affecting medical students on PBL and non-PBL programmes. Course designers and student support services should therefore tailor their work to minimise, or help students cope with, the specific stressors on each course type to ensure optimum learning and wellbeing among our future doctors

    The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation

    Get PDF
    The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
    corecore