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Psychometric precision in phenotype definition is a useful step
in molecular genetic investigation of psychiatric disorders
MK Xu1, D Gaysina2, JH Barnett3,4, L Scoriels3,5, LN van de Lagemaat6, A Wong7, M Richards7, TJ Croudace8, PB Jones3 and the LHA
genetics group7

Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic
association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of
symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the
precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth
cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for
affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The
psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable
factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression
domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor
psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically
defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore
offer a useful approach in genetic association investigations.
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INTRODUCTION
Affective disorders are highly heritable,1–3 yet few genetic risk
variants have been consistently replicated in molecular genetic
association studies.4,5 Recent genome-wide association studies
(GWAS) of major depression,6,7 depressive symptoms8 and bipolar
disorder9 have gained substantially stronger statistical power
because of increased sample sizes; nonetheless, the majority of
genetic variants conferring risk remain unidentified.
Classification of affective disorder is usually based on self-

reported symptoms intended to capture psychopathological
syndromes through questionnaire responses, clinical ratings and
evaluations or by field-trained interviewers. Psychiatric pheno-
types defined this way may be especially susceptible to variance
introduced by testing methods or other potentially bias-inducing
elements that are not primarily related to the disorder itself.
Moreover, typical effect sizes of common genetic variants are so
small that many existing molecular genetic studies lack sufficient
statistical power to detect such small effects. In order to better
understand the genetic signals of complex psychiatric pheno-
types, there is an argument for adopting approaches that can
improve the definition of these phenotyps.10 Indeed, as Green
et al.11 noted, ‘even the most precise molecular genetic data
cannot be useful if the phenotypes are not well defined’. Some
work has previously been done to develop statistical tools for the
detection of genetic associations in both candidate gene and
GWAS.10,12–15 For example, van der Sluis et al.14 have developed

the TATES method that combines P-values based on correlations
between components of multivariate phenotype. The TATES
method has demonstrated higher statistical power compared
with methods based on composite scores or multivariate analysis
of variance.
Many scaled instruments have a priori hierarchical and multi-

dimensional structure, with specific clusters of psychiatric signs or
symptoms combined into a summation score (for example, the
General Health Questionnaire 28-item version (GHQ-28) or the
Center for Epidemiological Studies Depression Scale).16–18 The
GHQ-28 is a widely used self-report questionnaire to measure
psychosocial dysfunction and psychological distress, with the
following four subscales: Somatic Symptoms, Anxiety/Insomnia,
Social Dysfunction, and Severe Depression.19,20 Traditionally, a
single measure of global affective symptoms is derived from item
responses and a threshold/cutpoint used to define ‘caseness’. This
approach based on summation of items adopts a unidimensional
data structure assumption, instead of fully taking into account the
dimensions represented by the four subscales. When greater
complexity is present, a unidimensional assumption leads to an
inaccurate measure of affective symptoms and can alter the
strength of association with covariates such as genetic
polymorphisms.21 Psychometric methods that use latent variable
methods to model multidimensional data in intelligence and
personality have been developed and are widely used
elsewhere.22–24 More recently, these methods have been applied
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to the understanding of psychiatric phenotypes.25–28 However,
they are yet to be widely applied to phenotypes for molecular
genetic associations.29,30 Ignoring the complex dimension struc-
ture intrinsic to the psychiatric instrument can result in less clear
phenotype definition, and may dilute the strength of true genetic
association. As a result, it becomes increasingly more difficult to
observe consistent association signals for common genetic
variants that have small effect sizes.
In the present study using data from a population-

representative birth cohort sample, we tested associations
between candidate genes previously implicated in affective
disorders and alternative outcomes based on two statistical
approaches to define affective symptoms measured with the
GHQ-28—the traditional sum score approach and the psycho-
metric approach incorporating dimensional aspect of a complex
latent phenotype. Rather than seek to identify novel genetic
associations, we aim to compare the strength of associations for
known candidate genes and phenotypes using standard summa-
tion score approach and potentially more accurate psychometric
method. The psychometrical approach utilized a latent variable bi-
factor model specification.21,28 In the bi-factor model, both the
global factor representing total affective symptoms, and the
specific factors corresponding to the symptoms of GHQ-28
subdimensions were psychometrically defined using latent vari-
able technique. The bi-factor model is advantageous because it
facilitates more flexible phenotype definition in the presence of an
a priori multidimensional data structure. Hence, we hypothesize
that, compared with the sum score approach, the global
psychometric latent factor of affective symptoms in the bi-factor
model would show stronger genetic associations in terms of effect

sizes. Similarly, for specific dimensions of affective symptoms, we
hypothesize that the dimension-specific phenotypes defined with
the bi-factor models would show stronger genetic associations’
effect sizes as compared with the sum score measures for each of
these dimensions.

MATERIALS AND METHODS
Subjects
The study sample was based on the Medical Research Council National
Survey of Health and Development, also known as the British 1946 birth
cohort, which originally consisted of 5362 survey members (2547 females
and 2815 males) born in 1 week in March 1946 in England, Scotland and
Wales.31 Both the GHQ-28 data and the blood sample were collected in
1999, when the cohort members were 53 years old. The cohort was shown
to be representative of a UK population of the same age.32 The data
collection received Multi-Centre Research Ethics Committee approval, and
participants gave informed consent.

Phenotype measures
Affective symptoms were assessed with GHQ-28 when the survey
members were aged 53 years. Participants (n= 3035) answered 28
questions, coded on a four-point Likert scale rating from ‘not at all’ to
‘much more than usual’ on whether they had recently experienced
symptoms from four affective disorder domains, i.e. Anxiety/Insomnia (for
example, ‘losing sleep over worry’), Somatic Symptoms (for example,
‘feeling ill’), Social Dysfunction (for example, ‘being able to enjoy normal
day-to-day activities’) and Depression (for example, ‘feeling that life is
entirely hopeless’). On the basis of the GHQ-28 responses, phenotype
measures of affective symptoms were developed using the following: (1) a
traditional sum score approach and (2) a psychometric latent variable
approach.

Figure 1. Psychometric model of General Health Questionnaire 28-item version (GHQ-28) items with a single-nucleotide polymorphism (SNP)
predictor. Oval shapes are latent variables representing global and specific affective disorder domains. Rectangular shapes are observed
variables including both the SNP predictor and GHQ-28 items that are the basis of the latent variables. Arrows leading from a SNP variable to
latent variables represent the regression path from the SNP predictor to global as well as specific phenotype dimensions. The arrows between
the latent variable to the observed variables indicate the strength of the relationship between the two, represented by standardized factor
loadings. The standardized factor loadings are based on a phenotype-only model (excluding the SNP predictor variable from the model). The
model fit indices were as follows: 1643.081 (273 degree of freedom) for Χ2, 0.061 for Root Mean Square Error of Approximation (RMSEA), 0.968
for Comparative Fit Index (CFI) and 0.961 for Tucker–Lewis Index (TLI). *The indicator ‘headaches’ was based on the sum of two highly
correlated items. This is to avoid convergence problems caused by the high colinearity between the two items. **Similarly, ‘sleep problems’
were also based on two substantially correlated items. Both items were still treated as ordinal measures in model estimation.
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Sum score approach. For a global measure of affective symptoms, a Likert
sum score based on all 28 GHQ-28 items was calculated. Sum scores were
also calculated for the four subscales of affective symptoms, using the
items corresponding to each dimension.

Psychometric latent variable approach. The psychometric phenotype of
affective symptoms was specified in the form of a bi-factor model
(Figure 1). The phenotype outcome variables were posited as latent
variables. The bi-factor specification allows the questionnaire items to
measure directly both the global factor and four specific factors
representing each subdimension of affective symptoms. The factors in
the bi-factor model are orthogonal, with covariances among factors
specified to be zero. That is, under the bi-factor specification, the global
factor is based on information corresponding to the global affective
symptom phenotype and is no longer ‘contaminated’ by variances that are
specific to the subdimensions. Similarly, subdimensions that otherwise
embedded in a single global measure according to the sum score
approach are now modeled separately as distinct, nonoverlapping
dimension-specific latent factors.

Genotyping
DNA samples (n= 2756) were extracted and purified from whole blood
using the PuregeneDNA Isolation Kit (Flowgen, Leicestershire, UK)
according to the manufacturer’s protocol.33

In total, 249 single-nucleotide polymorphisms (SNPs) covering 27
candidate genes were included in the present study. The candidate genes
were selected on the basis of existing evidence for their associations with
affective disorders and/or neurocognitive and psychological functions
known to be impaired in affective disorders (Supplementary Table S1).
Some SNPs of these candidate genes were available from a separate
project using the Metabochip.34,35 Additional SNPs of these candidate
genes were selected using the Tagger implementation in the Haploview
program on the basis of the Hapmap CEU population data to get a better
coverage of the gene regions.36 SNPs were typed using the KASPar system
by LGC, Hoddesdon, UK (http://www.lgcgroup.com/) or Sequenom by
Medical Research Council Epidemiology Unit, Cambridge, UK (http://www.
sequenom.com/).34

The integrity of genotyping was checked with the call rates,
concordance of duplicates and minor allele frequency. The call rates for
the genotyped SNPs were 490%, with 495% concordance between
duplicate samples. Only SNPs with minor allele frequency40.05 were
included in the analysis.

Statistical analysis
As the candidate genes were chosen on an a priori basis, and as our sample
was not large enough to allow a high level of power for detection of small
effects, we compared effect sizes obtained using the two different
phenotype definition approaches by measuring the percentage of
phenotype variances explained by a SNP (R-squared).
We adopted an additive genetic model for the association analyses. For

each genotype, 0, 1 or 2 was assigned for an individual with a homozygote
with the major allele, heterozygote and homozygote for the minor allele,
respectively.
The final analysis sample consisted of 1337 individuals with complete

data. All analyses were performed in the statistical software package Mplus
7.11.37 (See Appendix for further details.) For the psychometric analysis
based on categorical variables, we used the WLSMV estimator with theta
parameterization. Scores for each questionnaire item were modeled as
ordered polytomous outcomes, through a probit regression link, to the
corresponding latent phenotype variables. This is a graded response, two-
parameter normal ogive model in item response theory terms.38

Goodness of fit
In order to evaluate the goodness of fit of the psychometric phenotype
model, we presented the Χ2-statistic and other commonly used model fit
indices. As the Χ2-measure is highly sensitive to the sample size, this
measure needs to be interpreted with caution.39,40 Other sample size-
independent fit indices include the Root Mean Square Error of
Approximation (RMSEA), the Tucker–Lewis Index (TLI) and the Comparative
Fit Index (CFI).41–43 The TLI and CFI vary along a 0-to-1 continuum, and
values greater than 0.90 and 0.95 typically reflect an acceptable and
excellent fit to the data. RMSEA values of less than 0.05 and 0.08 reflect a
close fit and a minimally acceptable fit to the data, respectively.

We conducted a post hoc power analysis for SNPs with the largest effect
sizes using statistical simulations. Sample size was fixed at 1337, the same
as in the analytic sample. Population parameters were also fixed to be
equal to the sample data of the corresponding SNP and phenotype. For
each power analysis, 1000 replication data sets were generated and
analyzed, with results averaged across the 1000 analysis.

RESULTS
Phenotype construction
GHQ item responses were coded using the Likert scale (0-1-2-3).
The global mental health sum scores were calculated, ranging
from 1 to 65, with a mean score of 17.37. For dimension-specific
phenotypes, the average score of somatic symptoms was 4.21,
ranging from 0 to 20. For social dysfunction, the average score was
7.14, ranging from 0 to 20. Anxiety scores had a mean of 4.85, with
a range of 0–21. The depression sum score ranged from 0 to 19,
with an average score of 1.18.
A bi-factor model (Figure 1) was fitted to represent the latent

psychometric structure of the phenotype for both global affective
symptoms, and the following item sets: somatic symptoms, social
dysfunction, anxiety symptoms and depression symptoms. Model
fit indices indicated excellent goodness of fit to data (RMSEA:
0.061; CFI: 0.968; TLI: 0.961). All factor loadings were statistically
significant at Po0.05.

Genetic association analysis
Association analysis was performed for all SNPs for both the sum
score version of the phenotype and the psychometric phenotype
(Figure 1). Results for individual SNP analyses are presented in
Supplementary Table S2 and Supplementary Table S3.
Distributions of the effect size frequencies were estimated as

densities (Figure 2) and plotted separately for the sum score
approach and the bi-factor approach. The area under each curve is
1 and represents the probability of observing an effect size range.
As shown in Figure 2, across all phenotype domains, for effect
sizes of smaller magnitude, the density of the smallest set of effect
sizes was higher for the sum score approach than for the bi-factor
approach. In particular, no SNP predictor explained more than 1%
of the phenotype variance on the basis of the sum score
approach. On the other hand, the density of larger effect sizes
was higher for the bi-factor approach. Thus, the bi-factor approach
in general yielded a larger number of, and in general, larger effect
sizes. To illustrate this finding for a particular candidate gene, the
effects of the 12 SNPs of the DLG4 gene on global affective
symptoms and GHQ-28 subscales are shown in Figure 3.
Compared with the sum score phenotype, affective symptoms
defined by the bi-factor approach had in general larger effect
sizes. This was especially the case for the anxiety-symptom
subscale.

Post hoc power analysis
Post hoc power analysis was performed for five SNPs with the
largest effect sizes for global affective disorder, anxiety, depres-
sion, social dysfunction and somatic-symptom factors (Table 1).
For anxiety-symptom factor, SNP rs1875673 of the DLG4 gene had
effect sizes of 0.006% and 5.153% for the phenotype defined with
the sum score approach and bi-factor approach, respectively. The
statistical power to detect these effect sizes was only 4.7% for the
sum score approach, but was as high as 85.5% for the bi-factor
approach. Similar trends favoring the psychometric approach
were observed for the other subscales. In particular, in regard to
somatic and anxiety symptoms, power based on the sum score
approach was below 5%, compared with more than 80% under
the bi-factor approach.
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Additional analysis using a model based on four first-order factors
To confirm the analysis with the DLG4 gene, we tested the SNP
association in addition with an alternative psychometric model that
specifies four GHQ dimensions as correlated first-order factors (see
Supplementary Figure S1). This model implies that the GHQ
dimensions are each self-contained constructs. Each dimension is
designed to measure an aspect of general mental health; therefore,
they are theoretically inter-related and share variances that are
because of the common domain of GHQ. In terms of measured
breath of phenotype content, the factors in the first-order factor
model are comparable to the Likert sum scores of each GHQ
dimensions, except that the first-order factor model is able to allow
for measurement errors. Results based on the first-order factor
model approach (Supplementary Figure S2) were very similar to
that of the sum score approach, and the effect sizes of the DLG4
SNPs remained largest for the bi-factor phenotypic model.

DISCUSSION
We systematically evaluated the effects of SNPs of candidate
genes on affective symptom outcomes defined through tradi-
tional sum score and psychometric approaches. In comparison
with the sum score approach, the psychometric approach allowed
for a more theoretically grounded and statistically refined

phenotype definition, and therefore had higher statistical power
through larger effect sizes.
The larger effect sizes observed in the bi-factor phenotype analysis

were consistent with the application of a more appropriate method
for phenotype definition that takes into account the complex
structure of the GHQ-28 subscales. The GHQ-28 consists of four
affective disorder subscales, each focusing on a specific theme of
homogenous symptoms. Although the four subscales are designed
to measure a global factor of affective symptoms, each dimension
has unique symptom variance that is substantial enough to be
modeled as separate factors through a bi-factor specification. As the
bi-factor model distinguishes the global factor from the specific sub-
scale factors, it allows the possibility of detecting genetic associations
with higher level of phenotype precision that would otherwise be
difficult to detect (that is, using the sum score approach).
The sum score of depression items had the highest skewness

(3.78 compared with between 1 and 1.5 for skewness from other
domains) with a rather low mean of 1.18 out of a possible highest
score of 21. Reduced power is present in data that are highly
skewed; nevertheless, latent variable approach can improve the
power of such data.10

In the present study, some genetic variants were shown to be
associated with specific subscales of affective symptoms mea-
sured by GHQ-28. This pattern of results was most clearly shown

Figure 2. Density plots of single-nucleotide polymorphism (SNP) effect sizes. The x axis represents effect size in terms of the percentage of
phenotypic variance explained by a single SNP. The y axis represents density of effect size.
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under the bi-factor model. For example, the effect of the DLG4
gene on anxiety symptoms emerged only under the bi-factor
model method. Compelling evidence suggests that affective
disorders are associated with dysfunction of brain glutamatergic
transmission.44 The DLG4 gene, which encodes post-synaptic
density protein 95 (PSD95), has a critical role in regulating N-
methyl-d-aspartate receptor receptor activity and its signal
transduction; PSD95 is a member of the synapse-associated
protein family of scaffolding molecules that control the organiza-
tion, composition and function of synapses.45,46 In particular, DLG4
knockout mice showed increased repetitive behaviors, abnormal
communication and social behaviors, impaired motor coordina-
tion and increased stress reactivity and anxiety-related
responses.47 Taken together, these findings indicate that the
aberrant expression and function of PSD95 may contribute to the
compromised N-methyl-d-aspartate receptor-mediated signaling
in affective symptoms, and in particular anxiety and stress
responses.
The heritability of domains and global measures of the GHQ-28

was previously studied in a representative twin sample from the

United Kingdom.48 Although the heritability of global affective
symptoms was 44%, the percentage varied from 20% for social
dysfunction to 44% for depression, indicating heterogeneity of the
genetic underpinnings of the subscales. A more recent twin study
examined the role of genetic factors in neuroticism, anxiety/
depression and somatic distress.49 The study estimated that
anxiety/depression shared 11% genetic variance with somatic
stress. These findings demonstrate that even closely related
subscales of affective symptoms can have unshared, unique
genetic variances. Failure to incorporate the dimensionality aspect
of complex traits could lead to reduced power to detect genetic
associations.21 This has also been investigated in simulation
studies of twin designs.13

In terms of association analysis on the basis of the first-order
model, whereas the first-order model reflected the dimensionality
of the GHQ structure on the subscale level, it failed to take into
account the global factor that represents global mental health.
The bi-factor model, on the other hand, was able to overcome the
dimensionality limitations of the first-order model and allowed
for both a global factor as well as specific factors, which are

Figure 3. Association results for single-nucleotide polymorphisms (SNPs) in the DLG4 gene (12 SNPs) for global and specific factor phenotypes.
The y axis represents effect size in terms of the percentage of variance explained in the phenotype. The x axis indicates the chromosome
positions (bp). The bars at the bottom of the x axis represent exon positions.

Table 1. Power analysis of sum score and bi-factor approaches for SNPs with largest effect size in bi-factor association results

Method Global affective
symptoms

Anxiety symptoms Depression symptoms Social dysfunction Somatic symptoms

Sum score Psychometric Sum score Psychometric Sum score Psychometric Sum score Psychometric Sum score Psychometric

SNP rs2793085 rs1875673 rs6603803 rs11233640 rs2070951
Gene DSC1 DLG4 GNB1 DLG2 NR3C2

Effect size (%) 0.53 1.12 0.01 5.15 0.40 2.96 0.30 1.42 0.03 1.72
Power (%) 76.10 79.50 4.70 85.50 63.90 78.50 54.00 80.20 10.10 83.70

Abbreviation: SNP, single-nucleotide polymorphism. Effect size is based on percentage of explained phenotype variances by a single SNP predictor. Power
statistic is based on 1000 simulated replications; sample size was fixed at 1337 as in the current sample.
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essentially variances after taking into account of the global factor.
The factors in the bi-factor model are all orthogonal to each other
(covariances among factors are specified to be zero), reflecting an
implied assumption that the global factor explains the correlations
among the subdimensions. That is, the general mental health
phenotype is only based on information that is no longer
‘contaminated’ by variances from the specific dimensions;
similarly, traits that originally overlap with each subdimension
are modeled separately as distinct, nonoverlapping factors. The
unique association between the DLG4 gene and specific factor on
anxiety indicates that the DLG4 potentially contributes to mental
health symptoms mainly through anxiety symptoms that are not
shared by other dimensions of the GHQ. If the ultimate purpose
was to reduce global mental health symptoms (in contrast to
specific factors for each symptom dimension), then targeting the
DLG4 gene would not be an efficient route. However, for better
understanding of severe anxiety disorder, it could be fruitful to
explore DLG4 biochemical pathways.
The advantage of the bi-factor model specification is that it fully

takes into account a global domain as well as the specific domains
in the presence of data complexity/multidimensionality. For
multidimensional phenotypes, a definition that emphasizes
unidimensionality (such as using a single sum score to represent
a global measure) produces a less accurate phenotype definition,
thus underestimating the strength of association between a SNP
and a phenotype of interest. This can consequently lead to
reduced statistical power in detecting associations because the
genetic link is masked by variances due to specific dimensions
embedded in the phenotype measure. The bi-factor specification
resolves this issue by separating the variances into phenotypes
that are specific to both the global construct and the specific
dimensions. Moreover, as the associations between a SNP and a
phenotype of interest are simultaneously estimated in a latent
variable framework, measurement errors are taken into account so
as to enable more accurate genetic association estimation.
It is worth noting that, even under the bi-factor psychometric

method, genetic association analyses using the global affective
symptom factor had weaker effect sizes than the subdimensions
of affective symptoms. The disparity in the densities of SNPs with
relatively low effect sizes between the sum score and bi-factor
approach is less pronounced for the global factor compared with
the differences between the two approaches in specific factors.
This indicates genetic heterogeneity of the global factor from
specific factors. It seems that the global, common mental health
factor is less explained by the candidate gene SNPs included in
the present studies. Instead of focusing on a global phenotype
that highlights shared common variances among all dimension-
specific symptoms, it might be more informative to look at
dimension-specific phenotypes that are conceptually more
homogeneous. The genetic architecture of dimension-specific
phenotypes could be simpler than that of the broader global
construct.
Although in the present investigation the bi-factor model fitted

the data very well, the factor structure is specified a priori, and
correlations between global and specific factors were specified to
be orthogonal. This was because the GHQ-28 is an instrument with
predefined symptom dimensions. In situations when the data
structure is not known or not well established, it is possible to
relax this specification and use a more exploratory framework,
allowing dimensions to be correlated through bi-factor rotation
methods.50–52

Psychometric approaches can be applicable in a variety of
contexts in psychiatric genetics and beyond, where the data
structure of phenotypes of interests is complex. For example, data
collected from studies that utilize different forms of assessment
methods might be prone to method effects.53–55 A phenotype
might consist of symptom items assessed by nurses, family
members and self-completed questionnaires. Although the effect

of an external assessor or self-administration should be irrelevant
to the association between the target phenotype and genetic
predictors, variances introduced by these unique external sources
potentially contaminate the phenotype measure and prevent
accurate genetic signals being observed.
Another issue is that, although this type of analysis is fast when

only several dozens of SNPs are included, it would require
substantial computational power to test for genome-wide
associations with hundreds of thousands of SNPs.
It is likely that the relationship between genetic and phenotypic

variables is much more complex. For example, there could be a
direct effect from a SNP variable to the individual items even after
accounting for the association between the SNP and the latent
phenotypic variable. In particular, van de Sluis et al.14 investigated
how to approach gene finding research if the exact location of a
SNP effect in multivariate data was unknown. In addition, when
subgroups of individuals (for example, males and females) are
present in the data, it is possible that the measurement model of
the phenotypes might differ across these groups, as will the
association between a genetic variant and a phenotype. Ignoring
hidden genetic–phenotype structures can lead to biased findings.
Some previous studies have investigated the impact that
phenotype measurement bias can have on the power to detect
genetic variants.14,15,56 These topics are beyond the scope of the
analytic framework in the present investigation, but need to be
explored in future studies.
In conclusion, the psychometric approach for phenotype

definition represents a useful step for genetic investigations of
psychiatric disorders. This approach affords a more flexible
phenotype definition, and thus provides greater statistical
strength to detect genetic associations.
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APPENDIX
Mplus input syntax, GHQ bi-factor phenotypes predicted by a
single SNP
TITLE: Genetic association analysis of SNP rs1875673 and GHQ
factors modeled with bi-factor model;
DATA:
FILE IS data.dat;
VARIABLE:
NAMES ARE
ghq0199 ghq0299 ghq0399 ghq0499 ghq0599 ghq0699

ghq0799 ghq0899 ghq0999
ghq1099 ghq1199 ghq1299 ghq1399 ghq1499 ghq1599

ghq1699 ghq1799 ghq1899 ghq1999
ghq2099 ghq2199 ghq2299 ghq2399 ghq2499 ghq2599

ghq2699 ghq2799 ghq2899
rs1875673;
USEVARIABLES ARE
v233 ghq0199 ghq0299 ghq0399 ghq0499 ghq0799
ghq1099 ghq1199 ghq1299 ghq1399 ghq1499 ghq1599

ghq1699 ghq1799
ghq1899 ghq1999 ghq2099 ghq2199 ghq2299 ghq2399

ghq2499 ghq2599 ghq2699 ghq2799
ghq2899 ghq5a6 ghq8a9;
CATEGORICAL ARE
ghq0199 ghq0299 ghq0399 ghq0499 ghq0799
ghq1099 ghq1199 ghq1299 ghq1399 ghq1499 ghq1599

ghq1699 ghq1799
ghq1899 ghq1999 ghq2099 ghq2199 ghq2299 ghq2399

ghq2499 ghq2599 ghq2699 ghq2799
ghq2899 ghq5a6 ghq8a9;
DEFINE:
ghq5a6 = SUM (ghq0599 ghq0699);
ghq8a9 = SUM (ghq0899 ghq0999);
ANALYSIS:
PARAMETERIZATION= THETA;
MODEL:
MENTAL by
ghq8a9 GHQ1699 GHQ1899 GHQ1999 GHQ2099 GHQ2399
GHQ2199 GHQ2299 GHQ2499 GHQ2599 GHQ2699 GHQ2799

GHQ2899
GHQ1099 GHQ1199 GHQ1299 GHQ1399 GHQ1499 GHQ1599

GHQ1799
GHQ0199 GHQ0299 GHQ0399 GHQ0499 ghq5a6 GHQ0799;
SPANX by
ghq8a9 GHQ1699 GHQ1899 GHQ1999 GHQ2099 GHQ2399;
SPDEP by
GHQ2199 GHQ2299 GHQ2499 GHQ2599 GHQ2699 GHQ2799

GHQ2899;
SPSOC by
GHQ1099 GHQ1199 GHQ1299 GHQ1399 GHQ1499 GHQ1599

GHQ1799;
SPSOM by
GHQ0199 GHQ0299 GHQ0399 GHQ0499 ghq5a6 GHQ0799;
MENTAL WITH SPANX@0 SPDEP@0 SPSOC@0 SPSOM@0;
SPANX WITH SPDEP@0 SPSOC@0 SPSOM@0;
SPDEP WITH SPSOC@0 SPSOM@0;
SPSOC WITH SPSOM@0;
SPANX ON rs1875673;
SPDEP ON rs1875673;
SPSOC ON rs1875673;
SPSOM ON rs1875673;
MENTAL ON rs1875673;
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