76 research outputs found

    Natural Cross Chlamydial Infection between Livestock and Free-Living Bird Species

    Get PDF
    The study of cross-species pathogen transmission is essential to understanding the epizootiology and epidemiology of infectious diseases. Avian chlamydiosis is a zoonotic disease whose effects have been mainly investigated in humans, poultry and pet birds. It has been suggested that wild bird species play an important role as reservoirs for this disease. During a comparative health status survey in common (Falco tinnunculus) and lesser (Falco naumanni) kestrel populations in Spain, acute gammapathies were detected. We investigated whether gammapathies were associated with Chlamydiaceae infections. We recorded the prevalence of different Chlamydiaceae species in nestlings of both kestrel species in three different study areas. Chlamydophila psittaci serovar I (or Chlamydophila abortus), an ovine pathogen causing late-term abortions, was isolated from all the nestlings of both kestrel species in one of the three studied areas, a location with extensive ovine livestock enzootic of this atypical bacteria and where gammapathies were recorded. Serovar and genetic cluster analysis of the kestrel isolates from this area showed serovars A and C and the genetic cluster 1 and were different than those isolated from the other two areas. The serovar I in this area was also isolated from sheep abortions, sheep faeces, sheep stable dust, nest dust of both kestrel species, carrion beetles (Silphidae) and Orthoptera. This fact was not observed in other areas. In addition, we found kestrels to be infected by Chlamydia suis and Chlamydia muridarum, the first time these have been detected in birds. Our study evidences a pathogen transmission from ruminants to birds, highlighting the importance of this potential and unexplored mechanism of infection in an ecological context. On the other hand, it is reported a pathogen transmission from livestock to wildlife, revealing new and scarcely investigated anthropogenic threats for wild and endangered species

    Structural studies of T4S systems by electron microscopy

    Get PDF
    Abstract: Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNA and/or proteins through the membranes of bacteria. Analysis of T4S system architecture is an extremely challenging task taking into account their multi protein organisation and lack of overall global symmetry. Nonetheless the last decade demonstrated an amazing progress achieved by X-ray crystallography and cryo-electron microscopy. In this review we present a structural analysis of this dynamic complex based on recent advances in biochemical, biophysical and structural studies

    Bridging conventional and molecular genetics of sorghum insect resistance

    Get PDF
    Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are a major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide and cause more than 9% loss annually. Annual losses due to insect pests in sorghum have been estimated to be 1,089millioninthesemiaridtropics(ICRISATAnnualreport1991.InternationalCropResearchInstituteforSemi−aridTropics.Patancheru,AndhraPradesh,India,1992),butdifferinginmagnitudeonaregionalbasis.KeyinsectpestsintheUSAincludethegreenbug,Schizaphisgraminum(Rondani);sorghummidge,Stenodiplosissorghicola(Coquillett);andvariouscaterpillarsintheSouthernareas.Forexample,damagebygreenbugtosorghumisestimatedtocostUSproducers1,089 million in the semiarid tropics (ICRISAT Annual report 1991. International Crop Research Institute for Semi-arid Tropics. Patancheru, Andhra Pradesh, India, 1992), but differing in magnitude on a regional basis. Key insect pests in the USA include the greenbug, Schizaphis graminum (Rondani); sorghum midge, Stenodiplosis sorghicola (Coquillett); and various caterpillars in the Southern areas. For example, damage by greenbug to sorghum is estimated to cost US producers 248 million annually. The major insect pests of sorghum on a global basis are the greenbug, sorghum midge, sorghum shoot fly (Atherigona soccata Rond.), stem borers (Chilo partellus Swin. and Busseola fusca Fuller), and armyworms (Mythimna separata Walk and Spodoptera frugiperda J.E. Smith). Recent advances in sorghum genetics, genomics, and breeding have led to development of some cutting-edge molecular technologies that are complementary to genetic improvement of this crop for insect pest management. Genome sequencing and genome mapping have accelerated the pace of gene discovery in sorghum..

    Classifying the evolutionary and ecological features of neoplasms

    Get PDF
    The consensus conference was supported by Wellcome Genome Campus Advanced Courses and Scientific Conferences. C.C.M. is supported in part by US NIH grants P01 CA91955, R01 CA149566, R01 CA170595, R01 CA185138 and R01 CA140657 as well as CDMRP Breast Cancer Research Program Award BC132057. M.J. is supported by NIH grant K99CA201606. K.S.A. is supported by NCI 5R21 CA196460. K. Polyak is supported by R35 CA197623, U01 CA195469, U54 CA193461, and the Breast Cancer Research Foundation. K.J.P. is supported by NIH grants CA143803, CA163124, CA093900 and CA143055. D.P. is supported by the European Research Council (ERC-617457- PHYLOCANCER), the Spanish Ministry of Economy and Competitiveness (BFU2015-63774-P) and the Education, Culture and University Development Department of the Galician Government. K.S.A. is supported in part by the Breast Cancer Research Foundation and NCI R21CA196460. C.S. is supported by the Royal Society, Cancer Research UK (FC001169), the UK Medical Research Council (FC001169), and the Wellcome Trust (FC001169), NovoNordisk Foundation (ID 16584), the Breast Cancer Research Foundation (BCRF), the European Research Council (THESEUS) and Marie Curie Network PloidyNet. T.A.G. is a Cancer Research UK fellow and a Wellcome Trust funded Investigator. E.S.H. is supported by R01 CA185138-01 and W81XWH-14-1-0473. M.Gerlinger is supported by Cancer Research UK and The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. M.Ge., M.Gr., Y.Y., and A.So. were also supported in part by the Wellcome Trust [105104/Z/14/Z]. J.D.S. holds the Edward B. Clark, MD Chair in Pediatric Research, and is supported by the Primary Children's Hospital (PCH) Pediatric Cancer Research Program, funded by the Intermountain Healthcare Foundation and the PCH Foundation. A.S. is supported by the Chris Rokos Fellowship in Evolution and Cancer. Y.Y. is a Cancer Research UK fellow and supported by The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. E.S.H. was supported in part by PCORI grants 1505–30497 and 1503–29572, NIH grants R01 CA185138, T32 CA093245, and U10 CA180857, CDMRP Breast Cancer Research Program Award BC132057, a CRUK Grand Challenge grant, and the Breast Cancer Research Foundation. A.R.A.A. was funded in part by NIH grant U01CA151924. A.R.A.A., R.G. and J.S.B. were funded in part by NIH grant U54CA193489
    • …
    corecore