1,640 research outputs found

    The diplomat's dilemma: Maximal power for minimal effort in social networks

    Full text link
    Closeness is a global measure of centrality in networks, and a proxy for how influential actors are in social networks. In most network models, and many empirical networks, closeness is strongly correlated with degree. However, in social networks there is a cost of maintaining social ties. This leads to a situation (that can occur in the professional social networks of executives, lobbyists, diplomats and so on) where agents have the conflicting objectives of aiming for centrality while simultaneously keeping the degree low. We investigate this situation in an adaptive network-evolution model where agents optimize their positions in the network following individual strategies, and using only local information. The strategies are also optimized, based on the success of the agent and its neighbors. We measure and describe the time evolution of the network and the agents' strategies.Comment: Submitted to Adaptive Networks: Theory, Models and Applications, to be published from Springe

    Urbanization and Green Spaces—A Study on Jnana Bharathi Campus, Bangalore University

    Get PDF
    Global warming is amongst the most alarming problems of the new era. Carbon emission is evidently the strongest fundamental factor for global warming. So increasing carbon emission is one of today’s major concerns, which is well addressed in the Kyoto Protocol. Trees are amongst the most significant elements of any landscape, because of both biomass and diversity, and their key role in ecosystem dynamics is well known. Trees absorb the atmospheric carbon dioxide and act as a carbon sink, since 50 % of biomass is carbon itself and the importance of carbon sequestration in forest areas is already accepted, and well documented. With this background, a carbon sequestration potential study was carried out in Jnana Bharathi campus, Bangalore University using the Quadrat method. The total geographical area is about 449.74 ha with a rich vegetation sector and the total amount of both above ground carbon (AGC) and below ground carbon (BGC) was estimated as an average of 54.8 t/ha. The total amount of carbon dioxide assimilated into the vegetation in terms of both above ground and below ground biomass was estimated as an average of 200.9 t/ha. Urbanization and habitat fragmentation seem to be increasing worldwide, substantiated by a case study in Bangalore City. The analysis revealed that increase in built-up area at the city level was by about 164.62 km2, while the vegetation and water bodies decreased by about 285.72 and 7.2 km2 respectively. However, Bangalore University, Jnana Bharathi campus attains a good vegetation cover and is seen as one of the ‘green lungs’ of Bangalore city

    Different reactions to adverse neighborhoods in games of cooperation

    Get PDF
    In social dilemmas, cooperation among randomly interacting individuals is often difficult to achieve. The situation changes if interactions take place in a network where the network structure jointly evolves with the behavioral strategies of the interacting individuals. In particular, cooperation can be stabilized if individuals tend to cut interaction links when facing adverse neighborhoods. Here we consider two different types of reaction to adverse neighborhoods, and all possible mixtures between these reactions. When faced with a gloomy outlook, players can either choose to cut and rewire some of their links to other individuals, or they can migrate to another location and establish new links in the new local neighborhood. We find that in general local rewiring is more favorable for the evolution of cooperation than emigration from adverse neighborhoods. Rewiring helps to maintain the diversity in the degree distribution of players and favors the spontaneous emergence of cooperative clusters. Both properties are known to favor the evolution of cooperation on networks. Interestingly, a mixture of migration and rewiring is even more favorable for the evolution of cooperation than rewiring on its own. While most models only consider a single type of reaction to adverse neighborhoods, the coexistence of several such reactions may actually be an optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON

    Information transfer fidelity in spin networks and ring-based quantum routers

    Get PDF
    Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls

    Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule

    Get PDF
    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system

    Two-Item Sentence Comprehension by a Dog (Canis familiaris)

    Get PDF
    Syntax use by non-human animals remains a controversial issue. We present here evidence that a dog may respond to verbal requests composed of two independent terms, one referring to an object and the other to an action to be performed relative to the object. A female mongrel dog, Sofia, was initially trained to respond to action (point and fetch) and object (ball, key, stick, bottle and bear) terms which were then presented as simultaneous, combinatorial requests (e.g. ball fetch, stick point). Sofia successfully responded to object-action requests presented as single sentences, and was able to flexibly generalize her performance across different contexts. These results provide empirical evidence that dogs are able to extract the information contained in complex messages and to integrate it in directed performance, an ability which is shared with other linguistically trained animals and may represent a forerunner of syntactic functioning

    Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features

    Get PDF
    Background: Action myoclonus-renal failure syndrome is a hereditary form of progressive myoclonus epilepsy associated with renal failure. It is considered to be an autosomal-recessive disease related to loss-of-function mutations in SCARB2. We studied a German AMRF family, additionally showing signs of demyelinating polyneuropathy and dilated cardiomyopathy. To test the hypothesis whether isolated appearance of individual AMRF syndrome features could be related to heterozygote SCARB2 mutations, we screened for SCARB2 mutations in unrelated patients showing isolated AMRF features. Methods: In the AMRF family all exons of SCARB2 were analyzed by Sanger sequencing. The mutation screening of unrelated patients with isolated AMRF features affected by either epilepsy (n = 103, progressive myoclonus epilepsy or generalized epilepsy), demyelinating polyneuropathy (n = 103), renal failure (n = 192) or dilated cardiomyopathy (n = 85) was performed as high resolution melting curve analysis of the SCARB2 exons. Results: A novel homozygous 1 bp deletion (c.111delC) in SCARB2 was found by sequencing three affected homozygous siblings of the affected family. A heterozygous sister showed generalized seizures and reduction of nerve conduction velocity in her legs. No mutations were found in the epilepsy, renal failure or dilated cardiomyopathy samples. In the polyneuropathy sample two individuals with demyelinating disease were found to be carriers of a SCARB2 frameshift mutation (c.666delCCTTA). Conclusions: Our findings indicate that demyelinating polyneuropathy and dilated cardiomyopathy are part of the action myoclonus-renal failure syndrome. Moreover, they raise the possibility that in rare cases heterozygous SCARB2 mutations may be associated with PNP features

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus
    corecore