3,846 research outputs found
On the complexity of color-avoiding site and bond percolation
The mathematical analysis of robustness and error-tolerance of complex
networks has been in the center of research interest. On the other hand, little
work has been done when the attack-tolerance of the vertices or edges are not
independent but certain classes of vertices or edges share a mutual
vulnerability. In this study, we consider a graph and we assign colors to the
vertices or edges, where the color-classes correspond to the shared
vulnerabilities. An important problem is to find robustly connected vertex
sets: nodes that remain connected to each other by paths providing any type of
error (i.e. erasing any vertices or edges of the given color). This is also
known as color-avoiding percolation. In this paper, we study various possible
modeling approaches of shared vulnerabilities, we analyze the computational
complexity of finding the robustly (color-avoiding) connected components. We
find that the presented approaches differ significantly regarding their
complexity.Comment: 14 page
Evaluating Active U: an Internet-mediated physical activity program.
Background:
Engaging in regular physical activity can be challenging, particularly during the winter months. To promote physical activity at the University of Michigan during the winter months, an eight-week Internet-mediated program (Active U) was developed providing participants with an online physical activity log, goal setting, motivational emails, and optional team participation and competition.
Methods:
This study is a program evaluation of Active U. Approximately 47,000 faculty, staff, and graduate students were invited to participate in the online Active U intervention in the winter of 2007. Participants were assigned a physical activity goal and were asked to record each physical activity episode into the activity log for eight weeks. Statistics for program reach, effectiveness, adoption, and implementation were calculated using the Re-Aim framework. Multilevel regression analyses were used to assess the decline in rates of data entry and goal attainment during the program, to assess the likelihood of joining a team by demographic characteristics, to test the association between various predictors and the number of weeks an individual met his or her goal, and to analyze server load.
Results:
Overall, 7,483 individuals registered with the Active U website (≈16% of eligible), and 79% participated in the program by logging valid data at least once. Staff members, older participants, and those with a BMI < 25 were more likely to meet their weekly physical activity goals, and average rate of meeting goals was higher among participants who joined a competitive team compared to those who participated individually (IRR = 1.28, P < .001).
Conclusion:
Internet-mediated physical activity interventions that focus on physical activity logging and goal setting while incorporating team competition may help a significant percentage of the target population maintain their physical activity during the winter months
The diplomat's dilemma: Maximal power for minimal effort in social networks
Closeness is a global measure of centrality in networks, and a proxy for how
influential actors are in social networks. In most network models, and many
empirical networks, closeness is strongly correlated with degree. However, in
social networks there is a cost of maintaining social ties. This leads to a
situation (that can occur in the professional social networks of executives,
lobbyists, diplomats and so on) where agents have the conflicting objectives of
aiming for centrality while simultaneously keeping the degree low. We
investigate this situation in an adaptive network-evolution model where agents
optimize their positions in the network following individual strategies, and
using only local information. The strategies are also optimized, based on the
success of the agent and its neighbors. We measure and describe the time
evolution of the network and the agents' strategies.Comment: Submitted to Adaptive Networks: Theory, Models and Applications, to
be published from Springe
Comparison of contact patterns relevant for transmission of respiratory pathogens in Thailand and the Netherlands using respondent-driven sampling
Understanding infection dynamics of respiratory diseases requires the identification and quantification of behavioural, social and environmental factors that permit the transmission of these infections between humans. Little empirical information is available about contact patterns within real-world social networks, let alone on differences in these contact networks between populations that differ considerably on a socio-cultural level. Here we compared contact network data that were collected in the Netherlands and Thailand using a similar online respondent-driven method. By asking participants to recruit contact persons we studied network links relevant for the transmission of respiratory infections. We studied correlations between recruiter and recruited contacts to investigate mixing patterns in the observed social network components. In both countries, mixing patterns were assortative by demographic variables and random by total numbers of contacts. However, in Thailand participants reported overall more contacts which resulted in higher effective contact rates. Our findings provide new insights on numbers of contacts and mixing patterns in two different populations. These data could be used to improve parameterisation of mathematical models used to design control strategies. Although the spread of infections through populations depends on more factors, found similarities suggest that spread may be similar in the Netherlands and Thailand
Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration
A major goal of personalized medicine is to pre-symptomatically identify individuals at high risk for disease using knowledge of each individual's particular genetic profile and constellation of environmental risk factors. With the identification of several well-replicated risk factors for age-related macular degeneration (AMD), the leading cause of legal blindness in older adults, this previously unreachable goal is beginning to seem less elusive. However, recently developed algorithms have either been much less accurate than expected, given the strong effects of the identified risk factors, or have not been applied to independent datasets, leaving unknown how well they would perform in the population at large. We sought to increase accuracy by using novel modeling strategies, including multifactor dimensionality reduction (MDR) and grammatical evolution of neural networks (GENN), in addition to the traditional logistic regression approach. Furthermore, we rigorously designed and tested our models in three distinct datasets: a Vanderbilt-Miami (VM) clinic-based case-control dataset, a VM family dataset, and the population-based Age-related Maculopathy Ancillary (ARMA) Study cohort. Using a consensus approach to combine the results from logistic regression and GENN models, our algorithm was successful in differentiating between high- and low-risk groups (sensitivity 77.0%, specificity 74.1%). In the ARMA cohort, the positive and negative predictive values were 63.3% and 70.7%, respectively. We expect that future efforts to refine this algorithm by increasing the sample size available for model building, including novel susceptibility factors as they are discovered, and by calibrating the model for diverse populations will improve accuracy
GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs
We present a prototype of a software tool for exploration of multiple
combinatorial optimisation problems in large real-world and synthetic complex
networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial
Explorer), provides a unified framework for scalable computation and
presentation of high-quality suboptimal solutions and bounds for a number of
widely studied combinatorial optimisation problems. Efficient representation
and applicability to large-scale graphs and complex networks are particularly
considered in its design. The problems currently supported include maximum
clique, graph colouring, maximum independent set, minimum vertex clique
covering, minimum dominating set, as well as the longest simple cycle problem.
Suboptimal solutions and intervals for optimal objective values are estimated
using scalable heuristics. The tool is designed with extensibility in mind,
with the view of further problems and both new fast and high-performance
heuristics to be added in the future. GraphCombEx has already been successfully
used as a support tool in a number of recent research studies using
combinatorial optimisation to analyse complex networks, indicating its promise
as a research software tool
Use of mixed methods designs in substance research: a methodological necessity in Nigeria
The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced
Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity
TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations
Altered thymic differentiation and modulation of arthritis by invariant NKT cells expressing mutant ZAP70
Various subsets of invariant natural killer T (iNKT) cells with different cytokine productions develop in the mouse thymus, but the factors driving their differentiation remain unclear. Here we show that hypomorphic alleles of Zap70 or chemical inhibition of Zap70 catalysis leads to an increase of IFN-gamma-producing iNKT cells (NKT1 cells), suggesting that NKT1 cells may require a lower TCR signal threshold. Zap70 mutant mice develop IL-17-dependent arthritis. In a mouse experimental arthritis model, NKT17 cells are increased as the disease progresses, while NKT1 numbers negatively correlates with disease severity, with this protective effect of NKT1 linked to their IFN-gamma expression. NKT1 cells are also present in the synovial fluid of arthritis patients. Our data therefore suggest that TCR signal strength during thymic differentiation may influence not only IFN-gamma production, but also the protective function of iNKT cells in arthritis
Why Are Male Social Relationships Complex in the Doubtful Sound Bottlenose Dolphin Population?
Copyright 2008 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
- …
