79 research outputs found
Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1
Background:
Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD.
Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked.
Conclusions/Significance:
These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications
Beliefs about bad people are volatile
People form moral impressions rapidly, effortlessly and from a remarkably young age1,2,3,4,5. Putatively \u2018bad\u2019 agents command more attention and are identified more quickly and accurately than benign or friendly agents5,6,7,8,9,10,11,12. Such vigilance is adaptive, but can also be costly in environments where people sometimes make mistakes, because incorrectly attributing bad character to good people damages existing relationships and discourages forming new relationships13,14,15,16. The ability to accurately infer the moral character of others is critical for healthy social functioning, but the computational processes that support this ability are not well understood. Here, we show that moral inference is explained by an asymmetric Bayesian updating mechanism in which beliefs about the morality of bad agents are more uncertain (and therefore more volatile) than beliefs about the morality of good agents. This asymmetry seems to be a property of learning about immoral agents in general, as we also find greater uncertainty for beliefs about the non-moral traits of bad agents. Our model and data reveal a cognitive mechanism that permits flexible updating of beliefs about potentially threatening others, a mechanism that could facilitate forgiveness when initial bad impressions turn out to be inaccurate. Our findings suggest that negative moral impressions destabilize beliefs about others, promoting cognitive flexibility in the service of cooperative but cautious behaviour
Axonal Regeneration and Neuronal Function Are Preserved in Motor Neurons Lacking Γ-Actin In Vivo
The proper localization of Γ-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of Γ-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA), suggesting that Γ-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of Γ-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific Γ-actin knock-out mice (Actb-MNsKO) to investigate the function of Γ-actin in motor neurons in vivo. Surprisingly, Γ-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that Γ-actin is not required for motor neuron function or regeneration in vivo
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment
Recommended from our members
A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset
During geomagnetic substorms, stored magnetic and plasma thermal energies are explosively converted into plasma kinetic energy. This rapid reconfiguration of Earthβs nightside magnetosphere is manifest in the ionosphere as an auroral display that fills the sky. Progress in understanding of how substorms are initiated is hindered by a lack of quantitative analysis of the single consistent feature of onset; the rapid brightening and structuring of the most equatorward arc in the ionosphere. Here, we exploit state-of-the-art auroral measurements to construct an observational dispersion relation of waves during substorm onset. Further, we use kinetic theory of high-beta plasma to demonstrate that the shear Alfven wave dispersion relation bears remarkable similarity to the auroral dispersion relation. In contrast to prevailing theories of substorm initiation, we demonstrate that auroral beads seen during the majority of substorm onsets are likely the signature of kinetic Alfven waves driven unstable in the high-beta magnetotail
Recovering complete and draft population genomes from metagenome datasets
Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution
Patient Experience in Health Center Medical Homes
The Human Resource and Services Administration, Bureau of Primary Health Care Health Center program was developed to provide comprehensive, community-based quality primary care services, with an emphasis on meeting the needs of medically underserved populations. Health Centers have been leaders in adopting innovative approaches to improve quality care delivery, including the patient centered medical home (PCMH) model. Engaging patients through patient experience assessment is an important component of PCMH evaluation and a vital activity that can help drive patient-centered quality improvement initiatives. A total of 488 patients from five Health Center PCMHs in south Florida were surveyed in order to improve understanding of patient experience in Health Center PCMHs and to identify quality improvement opportunities. Overall patients reported very positive experience with patient-centeredness including being treated with courtesy and respect (85 % responded always ) and communication with their provider in a way that was easy to understand (87.7 % responded always ). Opportunities for improvement included patient goal setting, referrals for patients with health conditions to workshops or educational programs, contact with the Health Center via phone and appointment availability. After adjusting for patient characteristics, results suggest that some patient experience components may be modified by educational attainment, years of care and race/ethnicity of patients. Findings are useful for informing quality improvement initiatives that, in conjunction with other patient engagement strategies, support Health Centers\u27 ongoing transformation as PCMHs
Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin
A growing number of solved protein structures display an elongated structural
domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel
alpha-helices. Alpha-rods are flexible and expose a large surface, which makes
them suitable for protein interaction. Although most likely originating by
tandem duplication of a two-helix unit, their detection using sequence
similarity between repeats is poor. Here, we show that alpha-rod repeats can be
detected using a neural network. The network detects more repeats than are
identified by domain databases using multiple profiles, with a low level of
false positives (<10%). We identify alpha-rod repeats in
approximately 0.4% of proteins in eukaryotic genomes. We then
investigate the results for all human proteins, identifying alpha-rod repeats
for the first time in six protein families, including proteins STAG1-3, SERAC1,
and PSMD1-2 & 5. We also characterize a short version of these repeats
in eight protein families of Archaeal, Bacterial, and Fungal species. Finally,
we demonstrate the utility of these predictions in directing experimental work
to demarcate three alpha-rods in huntingtin, a protein mutated in
Huntington's disease. Using yeast two hybrid analysis and an
immunoprecipitation technique, we show that the huntingtin fragments containing
alpha-rods associate with each other. This is the first definition of domains in
huntingtin and the first validation of predicted interactions between fragments
of huntingtin, which sets up directions toward functional characterization of
this protein. An implementation of the repeat detection algorithm is available
as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized
using BiasViz, a graphic tool for representation of multiple sequence
alignments
The role of tenascin-C in tissue injury and tumorigenesis
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer
- β¦