4,772 research outputs found

    The Difficult Case of Crystallization and Structure Solution for the ParC55 Breakage-Reunion Domain of Topoisomerase IV from Streptococcus pneumoniae

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is the major cause of community-acquired pneumonia and is also associated with bronchitis, meningitis, otitis and sinusitis. The emergence and increasing prevalence of resistance to penicillin and other antibiotics has led to interest in other anti-pneumonococcal drugs such as quinolones that target the enzymes DNA gyrase and topoisomerase IV. During crystallization and in the avenues to finding a method to determine phases for the structure of the ParC55 breakage-reunion domain of topoisomerase IV from Streptococcus pneumoniae, obstacles were faced at each stage of the process. These problems included: majority of the crystals being twinned, either non-diffracting or exhibiting a high mosaic spread. The crystals, which were grown under conditions that favoured diffraction, were difficult to flash-freeze without loosing diffraction. The initial structure solution by molecular replacement failed and the approach proved to be unviable due to the complexity of the problem. In the end the successful structure solution required an in-depth data analysis and a very detailed molecular replacement search. METHODOLOGY/PRINCIPAL FINDINGS: Crystal anti-twinning agents have been tested and two different methods of flash freezing have been compared. The fragility of the crystals did not allow the usual method of transferring the crystals into the heavy atom solution. Consequently, it was necessary to co-crystallize in the presence of the heavy atom compound. The multiple isomorphous replacement approach was unsuccessful because the 7 cysteine mutants which were engineered could not be successfully derivatized. Ultimately, molecular replacement was used to solve the structure by sorting through a large number of solutions in space group P1 using CNS. CONCLUSIONS/SIGNIFICANCE: The main objective of this paper is to describe the obstacles which were faced and overcome in order to acquire data sets on such difficult crystals and determine phases for successful structure solution

    Wear of knee prostheses

    Get PDF
    This paper describes how three different unique design solutions for artificial knee joints each provide extremely low wear and the potential for a 50-year osteolysis-free lifetime in high-demand patients. Each of the three low-wearing prosthetic design solutions provides a different and distinctive functional solution for the patient and surgeon

    PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: An experimental wear study

    Get PDF
    New bearing materials for total joint replacement have been explored as the need to improve longevity and enhance performance is driven by the changing demands of the patient demographic. Carbon-reinforced PEEK has demonstrated good wear characteristics in experimental wear simulation in both simple geometry pin-on-plate studies and in total hip joint replacement. Carbon reinforced PEEK CFR-PEEK has the potential to reduce tibial insert thickness and preserve bone in the knee. This study investigated the wear performance of PEEK and CFR-PEEK in a low conformity total knee replacement configuration. Custom-made flat inserts were tested against cobalt-chromium femoral bearings in a knee wear simulation for a period of three million cycles. Wear was assessed gravimetrically at intervals throughout the study. The wear rates of both PEEK and CFR-PEEK were very high and almost two orders of magnitude higher than the wear rate of UHMWPE under comparable conditions. Evidence of mechanical failure of the materials, including surface cracking and delamination was observed in both materials. This study highlights that these materials may not be suitable alternatives for UHMWPE in low-conformity designs

    Perkinsus marinus tissue distribution and seasonal variation in oysters Crassostrea virginica from Florida, Virginia and New York

    Get PDF
    Perkinsus marinus infection intensity was measured in eastern oysters Crassostrea virginica collected in October and December 1993, and March, May, and July 1994 from 3 U.S. sites: Apalachicola Bay (FL), Chesapeake Bay (VA), and Oyster Bay (Mr\u27). Gill, mantle, digestive gland. adductor muscle, hemolymph, and remaining tissue (including gonadal material and rectum) were dissected from 20 oysters from each site at each collection time. Samples were separately diagnosed for P. marin us infections by incubation in Ray\u27s Fluid Thioglycollate Medium (RFTM) and subsequent microscopic quantification of purified enlarged hypnospores. At all sampling times and sites, average P. marinus infection intensity (g wet wt tissue(-1) or ml hemolymph(-1)) was lowest in hemolymph samples, and generally highest in the digestive gland. Perkinsus marinus prevalence was 100% at both FL and NY sites for each of the 5 collection times, and, for the VA site, was less than 100% in only 1 month (May 1994). Seasonal intensity patterns and mean total body burdens differed among the sites. Average body burden was highest in VA during October and progressively declined to a minimum in May. This decline was probably due to mortality of heavily infected oysters and diminution of parasite activity associated with colder temperatures and reduced salinities. Intensities varied little during the months of October and December at both the FL and NY sites. Minimum average intensities were observed in March in FL oysters and May in NY oysters. Relatively high P. marinus infection levels that persisted throughout the winter in NY oysters compared with VA oysters could reflect constant high salinity in Long Island Sound which favors parasite activity, and also rapid decline in temperature in the fall that may have prevented epizootic oyster mortalities

    The effect of surgical alignment and soft tissue conditions on the kinematics and wear of a fixed bearing total knee replacement

    Get PDF
    As life expectancy and activity levels of patients increase so does the demand on total knee replacements (TKRs). Abnormal mechanics and wear of TKRs can lead to implant loosening and revision. Component alignment after surgery varies due to the presurgical alignment, the accuracy of the surgical instrumentation and due to patient factors, such as the soft tissue balance. This study experimentally investigated the effect of variation in component alignment and the soft tissue conditions on the kinematics and wear of a fixed bearing TKR. DePuy Sigma fixed bearing TKRs with moderately cross-linked UHMWPE were used. Different alignment conditions were simulated in the coronal, sagittal and transverse planes in an ISO force-controlled simulation system. Three different soft tissue conditions were simulated using virtual springs to represent a stiff knee, a preserved PCL and a resected PCL. Four different alignment conditions were studied; ideal alignment, 4° tibial and femoral varus joint line, 14° rotational mismatch and 10° posterior tibial slope. The varus joint line alignment resulted in similar kinematics and lower wear rate compared to ideal alignment. The rotational mismatch alignment resulted in significantly higher tibial rotation and abduction-adduction as well as a significantly higher wear rate than ideal alignment. The posterior tibial slope alignment resulted in significantly higher wear than the ideal alignment and dislocated under the lower tension soft tissue conditions. Component alignment and the soft tissue conditions had a significant effect on the kinematics and wear of the TKR investigated in this study. The surgical alignment of the TKR is an important factor in the clinical outcome of the joint as factors such as increased tibial rotation can lead to anterior knee pain and instability and increased wear can lead to aseptic loosening and early failure resulting in revision

    Quantification of the effect of cross-shear and applied nominal contact pressure on the wear of moderately cross-linked polyethylene

    Get PDF
    Polyethylene wear is a great concern in total joint replacement. It is now considered a major limiting factor to the long life of such prostheses. Cross-linking has been introduced to reduce the wear of ultra-high-molecular-weight polyethylene (UHMWPE). Computational models have been used extensively for wear prediction and optimization of artificial knee designs. However, in order to be independent and have general applicability and predictability, computational wear models should be based on inputs from independent experimentally determined wear parameters (wear factors or wear coefficients). The objective of this study was to investigate moderately cross-linked UHMWPE, using a multidirectional pin-on-plate wear test machine, under a wide range of applied nominal contact pressure (from 1 to 11 MPa) and under five different kinematic inputs, varying from a purely linear track to a maximum rotation of ±55°. A computational model, based on a direct simulation of the multidirectional pin-on-plate wear tester, was developed to quantify the degree of cross-shear (CS) of the polyethylene pins articulating against the metallic plates. The moderately cross-linked UHMWPE showed wear factors less than half of that reported in the literature for the conventional UHMWPE, under the same loading and kinematic inputs. In addition, under high applied nominal contact stress, the moderately cross-linked UHMWPE wear showed lower dependence on the degree of CS compared to that under low applied nominal contact stress. The calculated wear coefficients were found to be independent of the applied nominal contact stress, in contrast to the wear factors that were shown to be highly pressure dependent. This study provided independent wear data for inputs into computational models for moderately cross-linked polyethylene and supported the application of wear coefficient–based computational wear models

    Trapping of the transport-segment DNA by the ATPase domains of a type II topoisomerase

    Get PDF
    Type II topoisomerases alter DNA topology to control DNA supercoiling and chromosome segregation and are targets of clinically important anti-infective and anticancer therapeutics. They act as ATP-operated clamps to trap a DNA helix and transport it through a transient break in a second DNA. Here, we present the first X-ray crystal structure solved at 2.83 Å of a closed clamp complete with trapped T-segment DNA obtained by co-crystallizing the ATPase domain of S. pneumoniae topoisomerase IV with a nonhydrolyzable ATP analogue and 14-mer duplex DNA. The ATPase dimer forms a 22 Å protein hole occupied by the kinked DNA bound asymmetrically through positively charged residues lining the hole, and whose mutagenesis impacts the DNA decatenation, DNA relaxation and DNA-dependent ATPase activities of topo IV. These results and a side-bound DNA-ParE structure help explain how the T-segment DNA is captured and transported by a type II topoisomerase, and reveal a new enzyme–DNA interface for drug discovery

    Facilitation of spatial working memory performance following intra-prefrontal cortical administration of the adrenergic alpha1 agonist phenylephrine.

    Get PDF
    RATIONALE: Spatial working memory is dependent on the appropriate functioning of the prefrontal cortex (PFC). PFC activity can be modulated by noradrenaline (NA) released by afferent projections from the locus coeruleus. The coreuleo-cortical NA system could therefore be a target for cognitive enhancers of spatial working memory. Of the three classes of NA receptor potentially involved, the α2 and α1 classes seem most significant, though agents targeting these receptors have yielded mixed results. This may be partially due to the use of behavioural assays that do not translate effectively from the laboratory to the clinical setting. Use of a paradigm with improved translational potential may be essential to resolve these discrepancies. OBJECTIVES: The objective of this study was to assess the effects of PFC-infused α2 and α1 adrenergic receptor agonists on spatial working memory performance in the touchscreen continuous trial-unique non-matching to location (cTUNL) task in rats. METHODS: Young male rats were trained in the cTUNL paradigm. Cannulation of the mPFC allowed direct administration of GABA agonists for task validation, and phenylephrine and guanfacine to determine the effects of adrenergic agonists on task performance. RESULTS: Infusion of muscimol and baclofen resulted in a delay-dependent impairment. Administration of the α2 agonist guanfacine had no effect, whilst infusion of the α1 agonist phenylephrine significantly improved working memory performance. CONCLUSIONS: Spatial working memory as measured in the rat cTUNL task is dependent on the mPFC. Enhancement of noradrenergic signalling enhanced performance in this paradigm, suggesting a significant role for the α1 receptor in this facilitation.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA inkind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). CJH was funded by Wellcome Trust grant 089703/Z/09/Z.This is the final version of the article. It first appeared from Springer via http://link.springer.com/article/10.1007/s00213-015-4038-

    An in vitro simulation model to assess the severity of edge loading and wear, due to variations in component positioning in hip joint replacements

    No full text
    The aim of this study was to develop a preclinical in vitro method to predict the occurrence and severity of edge loading condition associated with the dynamic separation of the centres of the head and cup (in the absence of impingement) for variations in surgical positioning of the cup. Specifically, this study investigated the effect of both the variations in the medial–lateral translational mismatch between the centres of the femoral head and acetabular cup and the variations in the cup inclination angles on the occurrence and magnitude of the dynamic separation, the severity of edge loading, and the wear rate of ceramic‐on‐ceramic hip replacement bearings in a multi‐station hip joint simulator during a walking gait cycle. An increased mismatch between the centres of rotation of the femoral head and acetabular cup resulted in an increased level of dynamic separation and an increase in the severity of edge loading condition which led to increased wear rate in ceramic‐on‐ceramic bearings. Additionally for a given translational mismatch, an increase in the cup inclination angle gave rise to increased dynamic separation, worst edge loading conditions, and increased wear. To reduce the occurrence and severity of edge loading, the relative positions (the mismatch) of the centres of rotation of the head and the cup should be considered alongside the rotational position of the acetabular cup. This study has considered the combination of mechanical and tribological factors for the first time in the medial–lateral axis only, involving one rotational angle (inclination) and one translational mismatch

    Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones.

    Get PDF
    As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site-the E-site-found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252-14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site
    corecore