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Abstract

Background: Streptococcus pneumoniae is the major cause of community-acquired pneumonia and is also associated with
bronchitis, meningitis, otitis and sinusitis. The emergence and increasing prevalence of resistance to penicillin and other
antibiotics has led to interest in other anti-pneumonococcal drugs such as quinolones that target the enzymes DNA gyrase
and topoisomerase IV. During crystallization and in the avenues to finding a method to determine phases for the structure
of the ParC55 breakage-reunion domain of topoisomerase IV from Streptococcus pneumoniae, obstacles were faced at each
stage of the process. These problems included: majority of the crystals being twinned, either non-diffracting or exhibiting a
high mosaic spread. The crystals, which were grown under conditions that favoured diffraction, were difficult to flash-freeze
without loosing diffraction. The initial structure solution by molecular replacement failed and the approach proved to be
unviable due to the complexity of the problem. In the end the successful structure solution required an in-depth data
analysis and a very detailed molecular replacement search.

Methodology/Principal Findings: Crystal anti-twinning agents have been tested and two different methods of flash
freezing have been compared. The fragility of the crystals did not allow the usual method of transferring the crystals into
the heavy atom solution. Consequently, it was necessary to co-crystallize in the presence of the heavy atom compound. The
multiple isomorphous replacement approach was unsuccessful because the 7 cysteine mutants which were engineered
could not be successfully derivatized. Ultimately, molecular replacement was used to solve the structure by sorting through
a large number of solutions in space group P1 using CNS.

Conclusions/Significance: The main objective of this paper is to describe the obstacles which were faced and overcome in
order to acquire data sets on such difficult crystals and determine phases for successful structure solution.
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Introduction

It has been shown that topoisomerase lV, a tetrameric complex

composed of two ParC and two ParE subunits, is the preferred (or

dual) target for many quinolones in Streptococcus pneumoniae. DNA

topoisomerases play a central role in important cellular processess

such as DNA replication, transcription and chromosome segrega-

tion [1–3]. These enzymes control DNA topology by introducing

transient breaks into DNA strands. Type I topoisomerases make a

single-stranded DNA break and change the linking number in

steps of one, whereas type II topoisomerases catalyse the passage of

a DNA duplex through a double-stranded DNA break changing

the linking number by two at each catalytic cycle [4–6]. Most

bacteria possess two type IIA topoisomerases, DNA gyrase and

topoisomerase IV [7–9] which are closely related yet possess

distinctive functional activities. The N-terminal domain of ParC

(GyrA) catalyses breakage-reunion [10] and its interface with DNA

is the primary site of quinolone action. ParE (GyrB) has the

ATPase site which is involved in energy transduction. In Gram-

negative bacteria such as E. coli, it would appear that gyrase is the

primary target of quinolone action, whereas in Gram-positive

bacteria such as Streptococcus pneumoniae, topoisomerase IV or gyrase

can be the drug target in a manner dependent on quinolone

structure [11,12]. Interestingly, it has been shown in vitro that

pneumoccocal topoisomerase IV is more sensitive to quinolone

inhibition compared with gyrase, whereas the reverse holds for the

E. coli enzymes [13]. Also, there appear to be differences in DNA

site recognition between pneumococcal topoisomerase IV as

compared with E. coli gyrase [13]. These aspects have focused

attention on both DNA- and quinolone-recognition by the ParC

DNA breakage-reunion domain. To gain insight into mechanistic

and drug targeting features of topoisomerase IV in Gram-positive
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bacteria, we sought to express the 55-kDa breakage-reunion

domain of Streptococcus pneumoniae ParC (ParC55) and to determine

its X-ray crystal structure.

Here we go beyond the narrow documentation of final

crystallization conditions that produced the refinement-data

crystal, to describe the pathway to successful crystallization, data

collection and phase determination of this difficult protein with the

hope that our experiences will be instructive to others faced with

challenging crystallization problems. In this study, the 490-amino

acid residue N-terminal DNA breakage-reunion domain of ParC

(ParC55), selenomethionine-labelled 1–490 amino acid residue

ParC (Se-Met-ParC55) and a variety of cysteine mutants of 1–490

amino acid residue ParC have been expressed in E. coli and

purified to homogeneity. It proved relatively straightforward to

express the pneumococcal ParC55 in E. coli and to purify the

protein to homogenity. However, problems were encountered at

the crystallization stage including twinning and a lack of

diffraction for the majority of the crystals grown. Crystallization

conditions which included anti-twinning agents, detergents,

various precipitants and buffering systems have been tested with

an aim to obtain well diffracting single untwinned crystals. Two

different methods of flash freezing, one using liquid nitrogen and

the other using propane have been compared in order to minimize

lattice disordering during freezing. Three different methods of

producing heavy atom derivatized crystals, for acquiring data for

phasing the structure, have been tested. We obtained two crystal

forms, the orthorhombic and the hexagonal. The orthorhombic

I222 crystals have unit-cell parameters a = 136.92 Å, b = 137.85 Å,

c = 326.02 Å, a= b= c= 90u. The hexagonal crystal form diffracts

to a lower resolution of 5 Å
´

at the synchrotron. Data have been

collected to 2.7 Å. As a path to structure solution, several

approaches were taken concurrently such as tackling the structure

by multiwavelength anomalous diffraction (MAD) employing

crystals of selenomethionine-substituted ParC55, using molecular

replacement and the GyrA coordinates as a starting structural

model, and using multiple isomorphous replacement on the

crystals of ParC protein with engineered cysteines, which could

potentially be derivatized with a heavy atom through soaking or

by co-crystallization [14–16]. We have recently reported the full

structure solution and refined structure of ParC55, the quinolone

target, from Gram-positive bacterium [17]. Carr et al. have

described the crystallization of two N-terminal fragments of

ParC from another Gram-positive bacterium namely Staphylococcus

aureus [18].

Results and Discussion

Purification of ParC55, Se-Met-ParC55 and the mutants of
ParC55

ParC55, Se-Met-ParC55 and the mutants of ParC55 bearing

hexahistidine tags were expressed at high levels comprising up to

50% to 60% of the total soluble bacterial protein. It was possible

to purify the expressed protein to a single band, as detected by

SDS-PAGE, by two cycles of chromatography using a nickel-

NTA affinity column (Figure 1, lanes 2–9). Storage of the Se-

Met-ParC55 at 4uC presented a problem because microcrystals

grew in the stock solution at this temperature, which did not fully

dissolve and acted as seeds in the crystallization drops, causing

growth of a large number of tiny crystals and a substantial

precipitation. Therefore, the protein stock was stored at 220uC
in the presence of 20% glycerol. Crystals grew reproducibly only

from the batches which had not been frozen and thawed more

than twice.

The wild-type ParC55 crystals and data collection
Two crystal forms of the wild-type ParC55 grew from

precipitant solutions containing polyethylene glycol (PEG) 6000,

8000 and 20,000. The crystal form and diffraction quality of the

crystals were found to be pH dependent. The capillary mounted,

diamond shaped crystals (Figure 2A) which grew at pH between

4.0 and 6.0, diffracted to 3.5 Å whereas the hexagonal plates or

needles (Figure 2B), grown at pH above 6.0, diffracted only to 8–5

Å. It was not possible to collect any diffraction data for structure

determination using the capillary mounted crystals, because they

ceased diffracting after only 1–2 frames. Both crystal forms were

difficult to handle during mounting and flash-freezing procedures

and had a tendency to crack when the drop containing the crystal

was touched even without disturbing the crystal. Only one crystal

from each drop could be used given that the remaining crystals

started to deteriorate as soon as the well was opened. The

inclusion of 25–30% glycerol in the crystallization drop (added to

avoid changes in the crystal environment during freezing) was

found to be useful in obtaining diffraction to 2.8 Å (Table 1).

However, these crystals were slow to grow, requiring 6–8 weeks,

and exhibited a high mosaic spread. The best diffracting crystals of

the wild-type ParC55 grew from 100 mM Tris-HCl, pH 5.5,

200 mM NaCl, 1 mM â-mercaptoethanol, 0.05% sodium azide

and 10% of 1:1 ethanol-isopropanol as precipitant and diffracted

to 2.7 Å (Figure 3A). In this case, the crystallization drops

Figure 1. Analysis of purified ParC55 and its cysteine mutants
by 10% SDS-polyacrylamide gel electrophoresis. Lane 1,
molecular-weight markers; lane 2, wild-type; lane 3, Cys109; Lane 4,
Cys110; Lane 5, Cys190; lane 6, Cys294; lane 7, Cys387; lane 8, Cys426;
lane 9, Cys437. The molecular weights of the markers are indicated.
doi:10.1371/journal.pone.0003201.g001

Figure 2. The crystal forms. (A) Orthorhombic crystal of Cys426
grown from 8% PEG 20,000, 200 mM sodium chloride, 100 mM Tris-HCl,
pH 5.0, 0.1% sodium azide. (B) Hexagonal crystal of ParC55 grown from
8% PEG 20,000, 200 mM sodium chloride, 100 mM Tris-HCl, pH 7.0,
0.1% sodium azide.
doi:10.1371/journal.pone.0003201.g002
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contained 6 ı̀l protein solution and 6 ı̀l precipitant solution and the

reservoir was 500 ı̀l. Thus changing the precipitant from PEG to a

mixture of ethanol and isopropanol led to obtaining a data set for

the first time.

The cryoprotectant solutions containing 2-methylpropane-1,3-

diol (MPD), sucrose or glycerol, which are normally suitable for

the other protein crystals grown under the same crystallization

conditions as the wild-type ParC55 crystals, did not stabilize these

crystals. For example, only one out of 34 crystals tested diffracted

to 3.5 Å at SRS Daresbury. The orthorhombic crystals, which

grew from a precipitant solution containing a mixture of methanol

and ethanol, belong to space group I222 and have unit-cell

parameters a = 136.92 Å, b = 137.85 Å, c = 326.02 Å,

a= b= c= 90u. The cryoprotectant that worked best for these

crystals was composed of 30% MPD in 150 mM sodium chloride,

0.1% sodium azide, 100 mM Tris-HCl, pH 7.0. Efforts to obtain

well diffracting crystals by changing the buffering system from

Tris-HCl to citrate, MES or imidazole were not successful. Most of

the crystals were either visibly twinned or formed clusters. None of

the additives used in our experiments prevented the lattice

twinning of these crystals.

Se-Met-ParC55 crystals and comparison of flash-freezing
using liquid nitrogen and liquid propane

Large Se-Met-ParC55 crystals grew from PEG 400 and from

PEG 8000 within a few days. The molecular weight of the PEG

used for crystallization as well as the method of flash-freezing the

crystals proved to be very important for obtaining diffraction data

on these crystals. None of the 6 crystals flash-frozen using liquid

propane diffracted, whereas some of the crystals frozen in liquid

nitrogen diffracted to 2.9 Å. In this respect, the Se-Met-ParC55

crystals contrast with those of the C-terminal domain of UvrB

crystals [19] which diffracted to a much better resolution when

frozen in liquid propane than in liquid nitrogen. Here we report

the comparison of our experiments with these two methods of

flash-freezing using two proteins both of which are known to bind

DNA. These crystals had the dimensions of 10061006100 mm

and the unit-cell parameters a = 135.19 Å, b = 137.36 Å,

c = 323.96 Å, a= b= c= 90u.
From the analysis of Se-Met-ParC55 MAD data sets it was

concluded that the relatively large number of Se sites (16 Se sites

per monomer, 4 monomers per asymmetric unit) and twinning of

the crystals that increased the number of the Se sites in the

asymmetric unit to 128, made the determination and refinement

of the Se positions very difficult. Addition of the mercury and the

platinum compounds to the crystallization drops led to growth of

the hexagonal form, even when the final pH in the drop was kept

below 5.5. These crystals either did not diffract at all or diffracted

to a very low resolution. Thus, it was not possible to collect any

data on the heavy atom derivative crystals beyond 4 Å.

The mutant ParC55 crystals and diffraction
The cysteine mutants of ParC55 (Cys109, Cys110, Cys190,

Cys294, Cys437, Cys387, Cys426) gave the same two crystal forms

as the wild-type protein. The hexagonal crystals were very small.

The orthorhombic crystals were tested for their diffraction quality

and resolution. Both crystal forms were found to be twinned. The

number of crystals tested for each mutant and their resolution

limits are given in Table 2. The best resolution of 3.25 Å was

obtained for the crystals of ParC55 Cys426 without derivatization

(Figure 3B). The hexagonal form gave weak diffraction up to ,8

Å. The mutant Cys426 protein, that gave the best diffracting

crystals, was used for derivatization with mercury and platinum

compounds both by co-crystallization and by crystal soaking. Only

Figure 3. The Diffraction images. (A) Wild type ParC55 twinned
crystal grown in a hanging drop containing 6 ml of the protein solution
at 3 mg/ml concentration and 6 ml of the reservoir solution containing
200 mM sodium chloride, 0.09 mM sodium azide, 5% (v/v) ethanol, 5%
(v/v) isopropanol, 90 mM Tris-HCl, pH 5.5. The diffraction image was
taken from the highest resolution (2.7Å) data set collected at ESRF BM
30A. Crystal to detector distance was 340 mm and the exposure time
160 seconds. (B) Mutant Cys426 crystal grown from 6% PEG 400, 1 mM
b-mercaptoethanol, 0.05% sodium azide, 200 mM sodium chloride,
100 mM Tris-HCl, pH 6.5. The image was taken from the data set
collected at Rigaku Americas Corporation (The Woodlands, Texas, USA)
with crystal to detector distance of 336 mm and an exposure time of
5 min.
doi:10.1371/journal.pone.0003201.g003

Table 1. Crystals tested for diffraction in-house.

Protein No. of crystals tested No. of crystals diffracted

2.8–4 Å 4.1–5 Å 5.1–14 Å

ParC55 crystals grown from crystallization solution without glycerol 65 3 3 8

ParC55 crystals grown from crystallization solution containing 20% glycerol 29 2 2 0

Se-Met-ParC55 crystals grown from solutions without glycerol 10 4 2 0

Se-Met-ParC55+ethylmercury chloride crystals grown from solutions without
glycerol

8 1 0 0

ParC Cys190+ethylmercury chloride crystals grown from solutions without
glycerol

6 0 1 0

ParC55 crystals grown from crystallization solution without glycerol and
soaked in platinum compounds

65 3 3 8

doi:10.1371/journal.pone.0003201.t001
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two out of the 49 crystals remained undamaged on soaking in the

mercury compounds. The data collected on these crystals

exhibited a low occupancy for mercury which was also indicated

by fluorescence absorption edge scan. None of the co-crystals with

mercury diffracted.

The reservoir solution conditions, using PEG, for the mutant

crystals were similar to those determined for the wild-type ParC55

except that the pH boundary between the hexagonal and

orthorhombic crystal forms was higher and the concentration of

PEG, required for an optimum crystal size, was lower for the

mutant protein than for the wild-type. Unfortunately, the

resolution of their diffraction varied from crystal to crystal with

two crystals in the same drop behaving differently. From

exhaustive crystallization trials, many crystallization conditions

were established all of which showed low reproducibility and

produced only a very small number of crystals that diffracted.

Unlike the wild-type ParC55, the mutant ParC55 crystals did not

diffract well and exhibited a high mosaic spread when PEG was

replaced with a 1:1 mixture of ethanol and isopropanol. Moreover,

increasing the drop size resulted in just larger crystals which were

very similar to the small crystals in terms of diffraction.

Structure solution for the ParC55
Even though much effort was expended in attempting to solve

the Se sites using a wide range of software including the programs

SOLVE, SHELXD, and SnB, a clear solution for the sites was not

obtained. Although structures for homologous E. coli GyrA and E.

coli ParC were available, our initial attempts to solve the ParC55

structure by molecular replacement using AMoRe [20,21] failed

due to twinning and non-crystallographic symmetry of the crystals

as the space group appeared to be I4 but later proved to be I222.

A careful analysis of the diffraction data and the results of

rotational searches in both space groups helped in establishing the

real space group, which was I222 with non-crystallographic

symmetry operators mimicking the symmetry of the I4 space

group. In addition, the twinning operator (k,-h,l) was equivalent to

one of the symmetry operators within I4. Ultimately, molecular

replacement was used to solve the structure by sorting through a

large number of solutions in space group P1 using CNS [22]. The

final structure of the biological dimer of the ParC55 domain of

topoisomerase IV from Streptococcus pneumoniae is represented in

Figure 4. Each monomer contains two distinct regions labeled

‘head’ and ‘tail’. The ‘head’ consists of the DNA binding domain

labeled ‘CAP-like’ domain and the ‘tower’. The helices a14, a18,

a19 join the head with the tail. More details of the component

parts such as a3, a4, a14, a18, a19 helices, active-site tyrosines

and 100–122 loops as well as the electrostatic charge distribution

have been discussed elsewhere [17].

Materials and Methods

Expression plasmid for the 55 kDa N-terminal fragment
of ParC (ParC55)

The expression plasmid, encoding the N-terminal 1–490 amino

acid residues of Streptococcus pneumoniae ParC with molecular weight

55.5 kDa (ParC55), was constructed as described [17]. The

expressed ParC55 fragment carried a C-terminal hexahistidine

tag and a single amino acid substitution (I489L) resulting from

plasmid construction.

ParC55 expression and purification
E. coli BL21(lDE3) pLysS harbouring the expression plasmid

was grown in 1 litre LB medium at 30uC to an OD600 of 0.6.

IPTG was added to 1 mM and the culture was incubated for a

further three hours. Cells were harvested by centrifugation and the

bacterial pellet was resuspended in 30 ml of binding buffer

(20 mM Tris-HCl pH 8.0, 200 mM NaCl, 2 mM b-mercapto-

ethanol, 10% glycerol). The cell pellet was frozen in liquid

nitrogen and stored at 280uC overnight. Cells were thawed on ice

and lysozyme was added to a final concentration of 0.02%. After

brief sonication to reduce the viscosity, soluble cell extract was

recovered by centrifugation and mixed with 1 ml Ni-NTA resin

(Qiagen) at 4uC for 2 hours. The protein-bound resin was loaded

onto a column, washed with 20 ml of binding buffer and then

washed sequentially using the binding buffer containing 20 and

40 mM imidazole. ParC55 protein was eluted with the buffer

containing 200 mM imidazole. Fractions were analyzed by SDS-

polyacrylamide gel electrophoresis under reducing conditions and

the gel was stained with Coomassie blue and those containing the

purest protein were pooled together for dialysis against 50 mM

Tris-HCl pH 7.5, 200 mM NaCl, 5 mM DTT and 10% glycerol.

The protein was further purified by a second cycle of nickel affinity

chromatography using the same column.

Expression and purification of Se-Met-ParC55
A defined medium was used for the production of Se-Met

derivative of 1-490 residue fragment of ParC protein. It contained

the following components in 1 litre: 6 g Na2HPO4, 3 g KH2PO4,

0.5 g NaCl, 1 g NH4Cl, 2 ml of 1 M MgSO4, 100 ml of 1 M

CaCl2, 20 ml of 20% glucose, 0.5 ml of 1% thiamine, 10 ml of

400 mg/ml amino acid stock (without methionine), and 1 ml of

50 mg/ml selenomethionine. The expression plasmid for ParC55

was transformed into the host cell B834(lDE3)pLysS. Cells were

grown overnight (17 h) in the above medium at 30uC to an OD600

of 0.6. IPTG was added to a final concentration of 1 mM and the

culture was grown for another two hours before harvesting. Se-

Met-ParC55 was purified as described above for ParC55.

Cys-mutant proteins (Cys109, Cys110, Cys190, Cys294,
Cys387, Cys426, Cys437) derived from ParC55

ParC55 (residues 1–490) does not contain any cysteine residues

so mutagenesis of the ParC55 expression plasmid allowed the

introduction of a single cysteine at position 109, 110, 190, 294,

387, 426 or 437 of the protein. Pairs of 42-mer complementary

oligonucleotide primers were designed to regions encompassing

the relevant codon which was altered to that for cysteine (TGT or

Table 2. Mutant ParC55 crystals tested for diffraction in-
house.

Mutant No. of crystals tested No. of crystals diffracted

3.1–4 Å 4.1–6 Å 7–11 Å

Cys109 15 0 0 0

Cys110 7 0 2 5

Cys190 47 5 0 5

Cys294 9 0 0 9

Cys387 10 1 4 5

Cys426 14 1 1 7

Cys426+Hg 49 1 1 0

Cys437 1 0 0 1

Cys190+Hg 49 0 4 43

doi:10.1371/journal.pone.0003201.t002

Crystals of Part of Topo IV

PLoS ONE | www.plosone.org 4 September 2008 | Volume 3 | Issue 9 | e3201



TGC). Mutagenesis was performed with the mutagenic primers

and the expression plasmid for ParC55 as a template using the

QuikChange site-directed mutagenesis kit (Stratagene) and

following the manufacturer’s instructions. Plasmids recovered

from this procedure were sequenced to confirm that the correct

mutation had been introduced. Over-expression was carried out in

BL21(lDE3)pLysS and the protein was purified as described for

ParC55.

Screening and optimisation of crystallization conditions
The protein sample to be crystallized was dialysed for 2–4 hours

against a solution containing 10% glycerol, 200 mM NaCl, 2 mM

b-mercaptoethanol, 20 mM Tris-HCl, pH 7.0. The initial crys-

tallization conditions were screened using PEG ranging from 200

to 20,000 Da., ammonium sulphate, ethanol, methanol, a 1:1

mixture of ethanol and isopropanol and MPD as precipitants

according to the protocol described by McPherson [23]. Three

microlitres of the protein solution at 3 mg/ml concentration were

mixed with an equal volume of the reservoir solution containing

the precipitant in 200 mM NaCl, 2 mM b-mercaptoethanol, 0.1%

sodium azide, 100 mM Tris-HCl, pH 3.0–9.5. The drop was

equilibrated against 0.5 ml of reservoir solution in a VDX or

Linbro plate (Hampton Research Co.). The concentrations of

PEG, MPD and saturated ammonium sulphate were 0–30%, 10–

80% and 20–80%, respectively. Commercially available sets of

solutions including the HR-110 Crystal Screen kit, the HR-112

Crystal Screen II kit, the PEG/LiCl screen, and Grid Screen

Polyethylene Glycol 6000 (Hampton Research Co.) were also

tested.

Crystallization trials using additives (anti-twinning agents
and detergents)

A number of agents were tested as anti-twinning additives

including organic solvents (ethanol, isopropanol, methanol and

dioxane), detergents (Tween 20, Tween 80, Triton X-100, Triton

X-114, Brij 58, MEGA8 (octanoyl-N-methylglucamide), CHAPS,

DDAO (N,N-dimethyldodecylamine N-oxide), CTAB (cetyltri-

methylammoniumbromide), divalent and polyvalent ions. Com-

mercially available crystal screen kits were also tested for their

effect as anti-twinning solutions by using 10% v/v in the reservoir

and the crystallization drop. Compounds containing divalent and

polyvalent ions such as magnesium acetate, cadmium acetate, zinc

sulphate, zinc chloride, cobaltous(II) chloride, cobaltous sulphate,

copper sulphate and nickel nitrate were used at final concentra-

tions between 1 and 4 mM. The final concentration of the

detergents used was either 1% or equal to the critical micellar

concentration. Additional crystallization experiments were carried

out varying the protein concentration from 1.5 mg/ml to 22 mg/

ml and sodium chloride from 200 mM to 1 M. Crystallization

plates were incubated at 4uC, 22uC and 37uC.

Heavy atom derivatization of the wild-type ParC55 and
ParC55 Cys190 crystals

Co-crystallization experiments were set up in order to derivatize

the wild-type ParC55 with 1–3 mM platinum terpyridine, 1–

3 mM platinum tetrachloride, 3.9 mM PIP and 1–3.4 mM nickel

nitrate. Each compound was dissolved in reservoir solution

containing 200 mM sodium chloride, 0.1 mM sodium azide, 5%

Figure 4. Orthogonal views of the ParC55 biological dimer from Streptococcus pneumoniae. (A) Cartoon representation. The ‘towers’ and
the CAP-like domains are shown in ice blue; the ‘tails’ along with adjacent helices a14, a18 and a19 are in ochre; the helix a4 in red; the helix a3 in
cyan; the 100–122 loop in yellow. The active-site tyrosines are shown in green. Residues responsible for drug-resistance upon mutation are in purple.
(B) Electrostatic surface representation. The negatively charged regions are in red and positively charged regions are in blue. Panels were rendered
using VMD [27], Pov-Ray and PyMOL [28].
doi:10.1371/journal.pone.0003201.g004
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(v/v) ethanol, 5% (v/v) isopropanol, 100 mM Tris-HCl, pH 5.5

and crystallization was carried out by mixing 6 ml of this solution

with an equal volume of the protein solution at 2–3 mg/ml

concentration. The volume of the reservoir solution used was 500–

550 ml.

Co-crystallization of the ParC55 Cys190 was tested using

100 mM Tris-HCl, pH 6.0–7.0, 200 mM NaCl and 1-3% of PEG

400 as a precipitant in the presence of 0.05–6 mM concentrations

of one of the mercury compounds, i.e. p-aminophenylmercury

acetate, mercury chloride, mercury acetate, chloromercuryphenyl

sulphonic acid and ethylmercury chloride.

Flash-freezing the crystals and data collection
Crystals were quickly dragged through a drop of the

cryoprotectant solution using a loop and flash-frozen either in

liquid nitrogen or liquid propane. The ParC55 crystals were

screened for diffraction quality using two of our in-house data

collection systems, namely a Rigaku R-200 rotating anode

generator, Yale mirrors and Rigaku Americas Corporation (The

Woodlands, Texas, USA) R-AXIS IIC detector, and an Elliot GX-

18 rotating anode generator, Osmic mirrors and Rigaku Americas

Corporation (The Woodlands, Texas, USA) R-AXIS IV++
detector. The crystals grown from crystallization solutions

containing PEG were cryoprotected using the corresponding

crystallization solution containing 25% (v/v) glycerol in place of

water. Data were also collected at SRS Daresbury Laboratory

stations 7.2, 9.6, 14.2 and 10.1, and ESRF beamlines ID-14.4, ID-

29 and BM 30A. For a complete data collection, at least 180u of

data with 1u oscillations were collected using an appropriate

wavelength with the exposure time set to obtain at least one

saturated diffraction spot per frame. Crystal to detector distance

varied according to the resolution limits of the crystal. All data

collections were conducted keeping the crystal in a nitrogen

cryostream.

Prior to data collection, Se absorption edge scans were

performed to determine the peak, the inflection point and the

remote wavelengths. Data on Se-Met-ParC55 crystals were

collected choosing three wavelengths around the Se K edge,

0.9793 Å (peak), 0.9795 Å (inflection point) and 0.9392 Å (remote),

with an aim to determine the structure using the MAD method.

Similarly the data on mercury-derivatized crystals were recorded

at 1.00748 Å (peak), 1.00802 Å (inflection point) and 0.98000 Å

(remote). The data were indexed, integrated and merged using

HKL2000 [24] and XDS [25,26].
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