149 research outputs found

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure

    Von Bezold assimilation effect reverses in stereoscopic conditions

    Get PDF
    Lightness contrast and lightness assimilation are opposite phenomena: in contrast, grey targets appear darker when bordering bright surfaces (inducers) rather than dark ones; in assimilation, the opposite occurs. The question is: which visual process favours the occurrence of one phenomenon over the other? Researchers provided three answers to this question. The first asserts that both phenomena are caused by peripheral processes; the second attributes their occurrence to central processes; and the third claims that contrast involves central processes, whilst assimilation involves peripheral ones. To test these hypotheses, an experiment on an IT system equipped with goggles for stereo vision was run. Observers were asked to evaluate the lightness of a grey target, and two variables were systematically manipulated: (i) the apparent distance of the inducers; and (ii) brightness of the inducers. The retinal stimulation was kept constant throughout, so that the peripheral processes remained the same. The results show that the lightness of the target depends on both variables. As the retinal stimulation was kept constant, we conclude that central mechanisms are involved in both lightness contrast and lightness assimilation

    Young women's use of a microbicide surrogate: The complex influence of relationship characteristics and perceived male partners' evaluations

    Get PDF
    This is the post-print version of the article. The official published version can be found at the link below.Currently in clinical trials, vaginal microbicides are proposed as a female-initiated method of sexually transmitted infection prevention. Much of microbicide acceptability research has been conducted outside of the United States and frequently without consideration of the social interaction between sex partners, ignoring the complex gender and power structures often inherent in young women’s (heterosexual) relationships. Accordingly, the purpose of this study was to build on existing microbicide research by exploring the role of male partners and relationship characteristics on young women’s use of a microbicide surrogate, an inert vaginal moisturizer (VM), in a large city in the United States. Individual semi-structured interviews were conducted with 40 young women (18–23 years old; 85% African American; 47.5% mothers) following use of the VM during coital events for a 4 week period. Overall, the results indicated that relationship dynamics and perceptions of male partners influenced VM evaluation. These two factors suggest that relationship context will need to be considered in the promotion of vaginal microbicides. The findings offer insights into how future acceptability and use of microbicides will be influenced by gendered power dynamics. The results also underscore the importance of incorporating men into microbicide promotion efforts while encouraging a dialogue that focuses attention on power inequities that can exist in heterosexual relationships. Detailed understanding of these issues is essential for successful microbicide acceptability, social marketing, education, and use.This study was funded by a grant from National Institutes of Health (NIHU19AI 31494) as well as research awards to the first author: Friends of the Kinsey Institute Research Grant Award, Indiana University’s School of HPER Graduate Student Grant-in-Aid of Research Award, William L. Yarber Sexual Health Fellowship, and the Indiana University Graduate and Professional Student Organization Research Grant

    Quantum Communication

    Get PDF
    Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference

    Experimental long-lived entanglement of two macroscopic objects

    Get PDF
    Entanglement is considered to be one of the most profound features of quantum mechanics. An entangled state of a system consisting of two subsystems cannot be described as a product of the quantum states of the two subsystems. In this sense the entangled system is considered inseparable and nonlocal. It is generally believed that entanglement manifests itself mostly in systems consisting of a small number of microscopic particles. Here we demonstrate experimentally the entanglement of two objects, each consisting of about 10^12 atoms. Entanglement is generated via interaction of the two objects - more precisely, two gas samples of cesium atoms - with a pulse of light, which performs a non-local Bell measurement on collective spins of the samples. The entangled spin state can be maintained for 0.5 millisecond. Besides being of fundamental interest, the robust, long-lived entanglement of material objects demonstrated here is expected to be useful in quantum information processing, including teleportation of quantum states of matter and quantum memory.Comment: Submitted to Nature, June 9, 2001, 11 pages, 3 figures. Contents changed following referees' suggestion

    Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals

    Get PDF
    Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpkTg737) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca2+ primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca2+ derived from both extracellular and intracellular stores. This flow-induced Ca2+ signal was less robust in cilium-deficient monolayers. Flow-induced Ca2+ signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca2+. Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na+) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases

    Novel Use of Surveillance Data to Detect HIV-Infected Persons with Sustained High Viral Load and Durable Virologic Suppression in New York City

    Get PDF
    Background: Monitoring of the uptake and efficacy of ART in a population often relies on cross-sectional data, providing limited information that could be used to design specific targeted intervention programs. Using repeated measures of viral load (VL) surveillance data, we aimed to estimate and characterize the proportion of persons living with HIV/AIDS (PLWHA) in New York City (NYC) with sustained high VL (SHVL) and durably suppressed VL (DSVL). Methods/Principal Findings: Retrospective cohort study of all persons reported to the NYC HIV Surveillance Registry who were alive and 12yearsoldbytheendof2005andwhohad12 years old by the end of 2005 and who had 2 VL tests in 2006 and 2007. SHVL and DSVL were defined as PLWHA with 2 consecutive VLs $100,000 copies/mL and PLWHA with all VLs #400 copies/mL, respectively. Logistic regression models using generalized estimating equations were used to model the association between SHVL and covariates. There were 56,836 PLWHA, of whom 7 % had SHVL and 38 % had DSVL. Compared to those without SHVL, persons with SHVL were more likely to be younger, black and have injection drug use (IDU) risk. PLWHA with SHVL were more likely to die by 2007 and be younger by nearly ten years, on average. Conclusions/Significance: Nearly 60 % of PLWHA in 2005 had multiple VLs, of whom almost 40 % had DSVL, suggesting successful ART uptake. A small proportion had SHVL, representing groups known to have suboptimal engagement in care. This group should be targeted for additional outreach to reduce morbidity and secondary transmission. Measures based o

    Reward devaluation disrupts latent inhibition in fear conditioning

    Get PDF
    Three experiments explored the link between reward shifts and latent inhibition (LI). Using consummatory procedures, rewards were either downshifted from 32% to 4% sucrose (Experiments 1–2), or upshifted from 4% to 32% sucrose (Experiment 3). In both cases, appropriate unshifted controls were also included. LI was implemented in terms of fear conditioning involving a single tone-shock pairing after extensive tone-only preexposure. Nonpreexposed controls were also included. Experiment 1 demonstrated a typical LI effect (i.e., disruption of fear conditioning after preexposure to the tone) in animals previously exposed only to 4% sucrose. However, the LI effect was eliminated by preexposure to a 32%-to-4% sucrose devaluation. Experiment 2 replicated this effect when the LI protocol was administered immediately after the reward devaluation event. However, LI was restored when preexposure was administered after a 60- min retention interval. Finally, Experiment 3 showed that a reward upshift did not affect LI. These results point to a significant role of negative emotion related to reward devaluation in the enhancement of stimulus processing despite extensive nonreinforced preexposure experience

    The Type I NADH Dehydrogenase of Mycobacterium tuberculosis Counters Phagosomal NOX2 Activity to Inhibit TNF-α-Mediated Host Cell Apoptosis

    Get PDF
    The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persisting, intracellular pathogens such as the human pathogen Mycobacterium tuberculosis (Mtb) to inhibit infection-induced apoptosis of macrophages is important for virulence. The nuoG gene of Mtb, which encodes the NuoG subunit of the type I NADH dehydrogenase, NDH-1, is important in Mtb-mediated inhibition of host macrophage apoptosis, but the molecular mechanism of this host pathogen interaction remains elusive. Here we show that the apoptogenic phenotype of MtbΔnuoG was significantly reduced in human macrophages treated with caspase-3 and -8 inhibitors, TNF-α-neutralizing antibodies, and also after infection of murine TNF−/− macrophages. Interestingly, incubation of macrophages with inhibitors of reactive oxygen species (ROS) reduced not only the apoptosis induced by the nuoG mutant, but also its capacity to increase macrophage TNF-α secretion. The MtbΔnuoG phagosomes showed increased ROS levels compared to Mtb phagosomes in primary murine and human alveolar macrophages. The increase in MtbΔnuoG induced ROS and apoptosis was abolished in NOX-2 deficient (gp91−/−) macrophages. These results suggest that Mtb, via a NuoG-dependent mechanism, can neutralize NOX2-derived ROS in order to inhibit TNF-α-mediated host cell apoptosis. Consistently, an Mtb mutant deficient in secreted catalase induced increases in phagosomal ROS and host cell apoptosis, both of which were dependent upon macrophage NOX-2 activity. In conclusion, these results serendipitously reveal a novel connection between NOX2 activity, phagosomal ROS, and TNF-α signaling during infection-induced apoptosis in macrophages. Furthermore, our study reveals a novel function of NOX2 activity in innate immunity beyond the initial respiratory burst, which is the sensing of persistent intracellular pathogens and subsequent induction of host cell apoptosis as a second line of defense
    corecore