162 research outputs found

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Violence against women in relation to literacy and area of residence in Ethiopia

    Get PDF
    Objective: This study explores violence against women in a low-income setting in relation to residency and literacy. Setting: The study was conducted within the Butajira Rural Health Programme (a Health and Demographic Surveillance Site), which includes rural and semi-urban settings in south-central Ethiopia. Design: This is a community-based cross-sectional study and is part of the WHO Women&#x0027;s Health and Life Events multi-country study. It included 1,994 randomly selected married women. Methods: A standardised WHO questionnaire was used to measure physical violence, residency, literacy of the woman and her spouse, and attitudes of women about gender roles and violence. Analyses present prevalence with 95% confidence intervals and odds ratios derived from bivariate and multivariate logistic regression models. Results: In urban and rural areas of the study area, the women were of varying ages, had varying levels of literacy and had spouses with varying levels of literacy. Women in the overall study area had beliefs and norms favouring violence against women, and women living in rural communities and illiterate women were more likely to accept such attitudes. In general, violence against women was more prevalent in rural communities. In particular, violence against rural literate women and rural women who married a literate spouse was more prevalent. Literate rural women who were married to an illiterate spouse had the highest odds (Adj. OR=3.4; 95% CI: 1.7&#x2013;6.9) of experiencing physical violence by an intimate partner. Conclusion: Semi-urban lifestyle and literacy promote changes in attitudes and norms against intimate partner violence; however, within the rural lifestyle, literate women married to illiterate husbands were exposed to the highest risks of violence

    Synergy in Efficacy of Fungal Entomopathogens and Permethrin against West African Insecticide-Resistant Anopheles gambiae Mosquitoes

    Get PDF
    Background Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. Methodology/Findings A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days). Conclusions/Significance Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective

    Resistance to DDT and Pyrethroids and Increased kdr Mutation Frequency in An. gambiae after the Implementation of Permethrin-Treated Nets in Senegal

    Get PDF
    Introduction: The aim of this study was to evaluate the susceptibility to insecticides of An. gambiae mosquitoes sampled in Dielmo (Senegal), in 2010, 2 years after the implementation of Long Lasting Insecticide-treated Nets (LLINs) and to report the evolution of kdr mutation frequency from 2006 to 2010. Methods: WHO bioassay susceptibility tests to 6 insecticides were performed on adults F0, issuing from immature stages of An. gambiae s.l., sampled in August 2010. Species and molecular forms as well as the presence of L1014F and L1014S kd

    Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

    Get PDF
    West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans

    Population Genetics of Schistosoma japonicum within the Philippines Suggest High Levels of Transmission between Humans and Dogs

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms known as schistosomes, which infect about 200 million people worldwide. In the Philippines, as in China, the species of schistosome (Schistosoma japonicum) which causes the disease infects not only humans, but also many other species of mammals. In China, bovines are thought to be particularly important for harboring and transmitting S. japonicum, whereas in the Philippines infections in bovines are relatively rare. However, dogs, rats and pigs are often infected with S. japonicum in the Philippines, although the extent to which infections in these animals may give rise to human infections is unclear. To help answer this question, we characterized the genetic variation of the parasite in Samar province of the Philippines, and found that S. japonicum samples from humans, dogs, rats and pigs were genetically very similar, with no significant genetic difference between samples from humans and dogs. This suggests that in the Philippines this parasite is frequently transmitted between different mammalian species, particularly between dogs and humans. Reducing levels of infections in dogs may therefore help to reduce infections in humans. The results also suggest high levels of transmission between geographic areas, thus regional co-ordination of treatment programs is recommended

    Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management

    Get PDF
    Background: There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia’s programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings: A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids,DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance: Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management pla

    Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors

    Get PDF
    Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7–14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that ‘slow acting’ fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins
    corecore