360 research outputs found

    LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testing for selection is becoming one of the most important steps in the analysis of multilocus population genetics data sets. Existing applications are difficult to use, leaving many non-trivial, error-prone tasks to the user.</p> <p>Results</p> <p>Here we present LOSITAN, a selection detection workbench based on a well evaluated <it>F</it><sub><it>st</it></sub>-outlier detection method. LOSITAN greatly facilitates correct approximation of model parameters (e.g., genome-wide average, neutral <it>F</it><sub><it>st</it></sub>), provides data import and export functions, iterative contour smoothing and generation of graphics in a easy to use graphical user interface. LOSITAN is able to use modern multi-core processor architectures by locally parallelizing fdist, reducing computation time by half in current dual core machines and with almost linear performance gains in machines with more cores.</p> <p>Conclusion</p> <p>LOSITAN makes selection detection feasible to a much wider range of users, even for large population genomic datasets, by both providing an easy to use interface and essential functionality to complete the whole selection detection process.</p

    Worldwide distribution of NAT2 diversity: Implications for NAT2 evolutionary history

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The N-acetyltransferase 2 (<it>NAT2</it>) gene plays a crucial role in the metabolism of many drugs and xenobiotics. As it represents a likely target of population-specific selection pressures, we fully sequenced the <it>NAT2 </it>coding region in 97 Mandenka individuals from Senegal, and compared these sequences to extant data on other African populations. The Mandenka data were further included in a worldwide dataset composed of 41 published population samples (6,727 individuals) from four continental regions that were adequately genotyped for all common <it>NAT2 </it>variants so as to provide further insights into the worldwide haplotype diversity and population structure at <it>NAT2</it>.</p> <p>Results</p> <p>The sequencing analysis of the <it>NAT2 </it>gene in the Mandenka sample revealed twelve polymorphic sites in the coding exon (two of which are newly identified mutations, C345T and C638T), defining 16 haplotypes. High diversity and no molecular signal of departure from neutrality were observed in this West African sample. On the basis of the worldwide genotyping survey dataset, we found a strong genetic structure differentiating East Asians from both Europeans and sub-Saharan Africans. This pattern could result from region- or population-specific selective pressures acting at this locus, as further suggested in the HapMap data by extremely high values of <it>F</it><sub>ST </sub>for a few SNPs positions in the <it>NAT2 </it>coding exon (T341C, C481T and A803G) in comparison to the empirical distribution of <it>F</it><sub>ST </sub>values accross the whole 400-kb region of the <it>NAT </it>gene family.</p> <p>Conclusion</p> <p>Patterns of sequence variation at <it>NAT2 </it>are consistent with selective neutrality in all sub-Saharan African populations investigated, whereas the high level of population differentiation between Europeans and East Asians inferred from SNPs could suggest population-specific selective pressures acting at this locus, probably caused by differences in diet or exposure to other environmental signals.</p

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians

    Get PDF
    Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population

    A Worldwide Phylogeography for the Human X Chromosome

    Get PDF
    BACKGROUND: We reasoned that by identifying genetic markers on human X chromosome regions where recombination is rare or absent, we should be able to construct X chromosome genealogies analogous to those based on Y chromosome and mitochondrial DNA polymorphisms, with the advantage of providing information about both male and female components of the population. METHODOLOGY/PRINCIPAL FINDINGS: We identified a 47 Kb interval containing an Alu insertion polymorphism (DXS225) and four microsatellites in complete linkage disequilibrium in a low recombination rate region of the long arm of the human X chromosome. This haplotype block was studied in 667 males from the HGDP-CEPH Human Genome Diversity Panel. The haplotypic diversity was highest in Africa (0.992+/-0.0025) and lowest in the Americas (0.839+/-0.0378), where no insertion alleles of DXS225 were observed. Africa shared few haplotypes with other geographical areas, while those exhibited significant sharing among themselves. Median joining networks revealed that the African haplotypes were numerous, occupied the periphery of the graph and had low frequency, whereas those from the other continents were few, central and had high frequency. Altogether, our data support a single origin of modern man in Africa and migration to occupy the other continents by serial founder effects. Coalescent analysis permitted estimation of the time of the most recent common ancestor as 182,000 years (56,700-479,000) and the estimated time of the DXS225 Alu insertion of 94,400 years (24,300-310,000). These dates are fully compatible with the current widely accepted scenario of the origin of modern mankind in Africa within the last 195,000 years and migration out-of-Africa circa 55,000-65,000 years ago. CONCLUSIONS/SIGNIFICANCE: A haplotypic block combining an Alu insertion polymorphism and four microsatellite markers on the human X chromosome is a useful marker to evaluate genetic diversity of human populations and provides a highly informative tool for evolutionary studies

    Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    Get PDF
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species

    msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although testing for simultaneous divergence (vicariance) across different population-pairs that span the same barrier to gene flow is of central importance to evolutionary biology, researchers often equate the gene tree and population/species tree thereby ignoring stochastic coalescent variance in their conclusions of temporal incongruence. In contrast to other available phylogeographic software packages, msBayes is the only one that analyses data from multiple species/population pairs under a hierarchical model.</p> <p>Results</p> <p>msBayes employs approximate Bayesian computation (ABC) under a hierarchical coalescent model to test for simultaneous divergence (TSD) in multiple co-distributed population-pairs. Simultaneous isolation is tested by estimating three hyper-parameters that characterize the degree of variability in divergence times across co-distributed population pairs while allowing for variation in various within population-pair demographic parameters (sub-parameters) that can affect the coalescent. msBayes is a software package consisting of several C and R programs that are run with a Perl "front-end".</p> <p>Conclusion</p> <p>The method reasonably distinguishes simultaneous isolation from temporal incongruence in the divergence of co-distributed population pairs, even with sparse sampling of individuals. Because the estimate step is decoupled from the simulation step, one can rapidly evaluate different ABC acceptance/rejection conditions and the choice of summary statistics. Given the complex and idiosyncratic nature of testing multi-species biogeographic hypotheses, we envision msBayes as a powerful and flexible tool for tackling a wide array of difficult research questions that use population genetic data from multiple co-distributed species. The msBayes pipeline is available for download at <url>http://msbayes.sourceforge.net/</url> under an open source license (GNU Public License). The msBayes pipeline is comprised of several C and R programs that are run with a Perl "front-end" and runs on Linux, Mac OS-X, and most POSIX systems. Although the current implementation is for a single locus per species-pair, future implementations will allow analysis of multi-loci data per species pair.</p

    Patterns of population differentiation of candidate genes for cardiovascular disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basis for ethnic differences in cardiovascular disease (CVD) susceptibility is not fully understood. We investigated patterns of population differentiation (<it>F</it><sub><it>ST</it></sub>) of a set of genes in etiologic pathways of CVD among 3 ethnic groups: Yoruba in Nigeria (YRI), Utah residents with European ancestry (CEU), and Han Chinese (CHB) + Japanese (JPT). We identified 37 pathways implicated in CVD based on the PANTHER classification and 416 genes in these pathways were further studied; these genes belonged to 6 biological processes (apoptosis, blood circulation and gas exchange, blood clotting, homeostasis, immune response, and lipoprotein metabolism). Genotype data were obtained from the HapMap database.</p> <p>Results</p> <p>We calculated <it>F</it><sub><it>ST </it></sub>for 15,559 common SNPs (minor allele frequency ≥ 0.10 in at least one population) in genes that co-segregated among the populations, as well as an average-weighted <it>F</it><sub><it>ST </it></sub>for each gene. SNPs were classified as putatively functional (non-synonymous and untranslated regions) or non-functional (intronic and synonymous sites). Mean <it>F</it><sub><it>ST </it></sub>values for common putatively functional variants were significantly higher than <it>F</it><sub><it>ST </it></sub>values for nonfunctional variants. A significant variation in <it>F</it><sub><it>ST </it></sub>was also seen based on biological processes; the processes of 'apoptosis' and 'lipoprotein metabolism' showed an excess of genes with high <it>F</it><sub><it>ST</it></sub>. Thus, putative functional SNPs in genes in etiologic pathways for CVD show greater population differentiation than non-functional SNPs and a significant variance of <it>F</it><sub><it>ST </it></sub>values was noted among pairwise population comparisons for different biological processes.</p> <p>Conclusion</p> <p>These results suggest a possible basis for varying susceptibility to CVD among ethnic groups.</p
    corecore