1,988 research outputs found

    The correlation of dust and gas emission in star-forming environments

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.We present ammonia maps of portions of the W3 and Perseus molecular clouds in order to compare gas emission with submillimetre continuum thermal emission which are commonly used to trace the same mass component in star-forming regions, often under the assumption of local thermodynamic equilibrium (LTE). The Perseus and W3 star-forming regions are found to have significantly different physical characteristics consistent with the difference in size scales traced by our observations. Accounting for the distance of theW3 region does not fully reconcile these differences, suggesting that there may be an underlying difference in the structure of the two regions. Peak positions of submillimetre and ammonia emission do not correlate strongly. Also, the extent of diffuse emission is only moderately matched between ammonia and thermal emission. Source sizes measured from our observations are consistent between regions, although there is a noticeable difference between the submillimetre source sizes with sources in Perseus being significantly smaller than those in W3. Fractional abundances of ammonia are determined for our sources which indicate a dip in the measured ammonia abundance at the positions of peak submillimetre column density. Virial ratios are determined which show that our sources are generally bound in both regions, although there is considerable scatter in both samples. We conclude that sources in Perseus are bound on smaller scales than in W3 in a way that may reflect their previous identification as low-and high-mass, respectively. Our results indicate that assumptions of local thermal equilibrium and/or the coupling of the dust and gas phases in star-forming regions may not be as robust as commonly assumed. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.The authors would like to thank Neal Evans and Erik Rosolowsky for insightful and thorough comments on this work which have considerably improved its quality. The authors acknowledge the data analysis facilities provided by the Starlink Project under continual development by the JAC. In addition, the following Starlink packages have been used: Kappa, Cupid, GAIA, Convert and Coco. We would like to thank the helpful staff of the GBT in the collection of data used in this paper related to the project GBT10C_024. LKM is supported by a STFC postdoctoral grant (ST/G001847/1) and DJE is supported by a STFC PhD studentship. This research would not have been possible without the SIMBAD astronomical data base service operated at CDS, Strasbourg, France and the NASA Astrophysics Data System Bibliographic Services

    Avoiding catastrophic failure in correlated networks of networks

    Get PDF
    Networks in nature do not act in isolation but instead exchange information, and depend on each other to function properly. An incipient theory of Networks of Networks have shown that connected random networks may very easily result in abrupt failures. This theoretical finding bares an intrinsic paradox: If natural systems organize in interconnected networks, how can they be so stable? Here we provide a solution to this conundrum, showing that the stability of a system of networks relies on the relation between the internal structure of a network and its pattern of connections to other networks. Specifically, we demonstrate that if network inter-connections are provided by hubs of the network and if there is a moderate degree of convergence of inter-network connection the systems of network are stable and robust to failure. We test this theoretical prediction in two independent experiments of functional brain networks (in task- and resting states) which show that brain networks are connected with a topology that maximizes stability according to the theory.Comment: 40 pages, 7 figure

    A Two-sided Loop X-Ray Solar Coronal Jet Driven by a Minifilament Eruption

    Get PDF
    Most of the commonly discussed solar coronal jets are the type that consist of a single spire extending approximately vertically from near the solar surface into the corona. Recent research supports that eruption of a miniature filament (minifilament) drives many such single-spire jets and concurrently generates a miniflare at the eruption site. A different type of coronal jet, identified in X-ray images during the Yohkoh era, are two-sided loop jets, which extend from a central excitation location in opposite directions, along low-lying coronal loops that are more-or-less horizontal to the surface. We observe such a two-sided loop jet from the edge of active region (AR) 12473, using data from Hinode X-Ray Telescope (XRT) and Extreme Ultraviolet Imaging Spectrometer (EIS), and from Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI). Similar to single-spire jets, this two-sided loop jet results from eruption of a minifilament, which accelerates to over 140 km s−1 before abruptly stopping after striking an overlying nearly horizontal-loop field at ~30,000 km in altitude and producing the two-sided loop jet. An analysis of EIS raster scans shows that a hot brightening, consistent with a small flare, develops in the aftermath of the eruption, and that Doppler motions (~40 km s−1) occur near the jet formation region. As with many single-spire jets, the magnetic trigger here is apparently flux cancelation, which occurs at a rate of ~4 × 1018 Mx hr−1, broadly similar to the rates observed in some single-spire quiet-Sun and AR jets. An apparent increase in the (line-of-sight) flux occurs within minutes of the onset of the minifilament eruption, consistent with the apparent increase being due to a rapid reconfiguration of low-lying fields during and soon after the minifilament-eruption onset

    A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems

    Get PDF
    Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications

    Doctors and nurses benefit from interprofessional online education in dermatology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Benefits of online learning in the health sector have been demonstrated in previous studies. We examined the potential benefits of a joint web-based curriculum on atopic eczema for health personnel.</p> <p>Methods</p> <p>Enrolled doctors and nurses had access to the curriculum for 8 weeks. After the course learners completed a questionnaire. Two dermatologists rated the quality of the submitted homework assignments. Based on data from the project's budget and the Norwegian Medical Association, we estimated the saved travel expenses.</p> <p>Results</p> <p>Eighty-eight learners (46 doctors) registered for the course. We received 55 questionnaires (response rate 63%). Twenty-seven learners (31%; 16 doctors, 11 nurses; χ<sup>2 </sup>= 0.03; P = 0.87) used the discussion forum. We found no significant differences in the total questionnaire scores between doctors and nurses. The homework assignments were given an average score of 3.6 for doctors and 3.5 for nurses (P = 0.8) by rater 1. Rater 2 scored 3.9 and 3.6 for doctors and nurses respectively (P = 0.2). The break-even between travel/hotel expenses and course development costs occurred at 135 saved travel refund applications.</p> <p>Conclusions</p> <p>Doctors and nurses were equally satisfied with a joint web-based course on atopic eczema. The use of an online discussion forum was limited but similar between doctors and nurses. There were no significant differences in the quality of submitted homework assignments. The cost of developing the course was 716 841 NOK and the first 86 learners saved 455 198 NOK in travel expenses.</p

    Latent cluster analysis of ALS phenotypes identifies prognostically differing groups

    Get PDF
    BACKGROUND Amyotrophic lateral sclerosis (ALS) is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes. METHODS Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method. RESULTS The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001). Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb) and time from symptom onset to diagnosis (p<0.00001). CONCLUSION The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research

    The electric wind of Venus: A global and persistent "polar wind"-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions

    Get PDF
    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an “ambipolar” electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earth's similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an “electric wind” must be considered when studying the evolution and potential habitability of any planet in any star system
    corecore