28 research outputs found

    Long-term changes in lowland calcareous grassland plots using Tephroseris integrifolia subsp. integrifolia as an indicator species

    Get PDF
    We investigated the changes to calcareous grassland plots within protected sites, and whether Tephroseris integrifolia subsp. integrifolia can act as a useful indicator species for re-visitation studies within vegetation predicted to remain relatively stable. Twenty-two plots located across lowland England and all formerly containing T. integrifolia were re-surveyed following the methodology used in the original survey undertaken in the 1960s. Pseudo-turnover and between-observer bias were minimised by sampling replicate quadrats at each fixed plot using a single surveyor and at a similar time of year as the original survey. Qualitative details concerning grazing management were obtained for all sites. In contrast to other long-term re-visitation studies, all our study plots were intact and retained diverse, herb-rich vegetation, demonstrating the value of site protection. However, there were clear shifts in vegetation composition, most notably where T. integrifolia was absent, as shown by an increase in Ellenberg fertility and moisture signifying nutrient enrichment, and a decrease in the cover of low-growing, light-demanding specialists, with a change likely to be associated predominantly with grazing management. Whereas in the mid-20th century the greatest threat to calcareous grassland was habitat loss, undergrazing or temporary neglect now appears to pose the principal threat. Distinctive species such as T. integrifolia with marked sensitivity to habitat change provide a potentially useful tool for rapid assessment and monitoring of site quality. Focusing monitoring on such species allows non-expert observers to recognise the early stages of habitat degradation, providing, in effect, a “health check” on individual sites and groups of sites

    Using qualitative and quantitative methods to choose a habitat quality metric for air pollution policy evaluation

    Get PDF
    Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as ‘positive indicator-species’ (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialists’ assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts

    Soil recovery after removal of the N2-fixing invasive Acacia longifolia : consequences for ecosystem restoration

    Get PDF
    Abstract Invasion by Acacia longifolia alters soil characteristics and processes. The present study was conducted to determine if the changes in soil C and N pools and processes induced by A. longifolia persist after its removal, at the São Jacinto Dunes Nature Reserve (Portugal). Some areas had been invaded for a long time (>20 years) and others more recently (30%, ß-glucosaminidase activity (N mineralization index) >60% and potential nitrification >95%. Removal of plants and litter resulted in a >35% decrease in C and N content after four and half years. In recently invaded areas, ß-glucosaminidase activity and potential nitrification showed a marked decrease (>54% and >95%, respectively) after removal of both A. longifolia and litter. Our results suggest that after removal of an N2-fixing invasive tree that changes ecosystem-level processes, it takes several years before soil nutrients and processes return to pre-invasion levels, but this legacy slowly diminish, suggesting that the susceptibility of native areas to (re)invasion is a function of the time elapsed since removal. Removal of the N-rich litter layer facilitates ecosystem recovery

    The impact of dune stabilisation on the conservation status of sand dune systems in Wales

    No full text
    Sand dunes in Wales are becoming increasingly stable, reducing their biodiversity value, particularly for obligate and near obligate dune species. A case study shows that in the 1950s, 75 % of one dune site consisted of mobile dunes and embryonic dune slacks with open vegetation, but by the 1990s only about 6 % of the site could be classed as mobile or open, and embryonic dune slacks were virtually non-existent. This is now considered to be a trend that has affected all dune systems in Wales and most in north-west Europe. As a result, certain plant and fungus species associated with early successional stages and invertebrates that rely on open sandy areas may be facing local extinction. Drivers influencing stabilization can be external, such as sediment supply, nutrient enrichment, climate change, and predicted sea-level rise, and internal, such as soil development, grazing management, and scrub control together with recent measures to counter stabilization. The latter includes the new restoration technique of topsoil inversion or deep ploughing, with early results suggesting success in rejuvenating sand movement. Mobilization will also enable landward migration, providing a mechanism to help conserve the overall sand body in the face of sea-level rise
    corecore