333 research outputs found

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.</p> <p>Methods</p> <p>C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.</p> <p>Results</p> <p>BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.</p> <p>Conclusions</p> <p>Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.</p

    Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522

    Get PDF
    It is proposed that non-steroidal anti-inflammatory drugs (NSAIDs) reduce colorectal tumorigenesis by inhibition of cyclooxygenase (COX). COX is a key enzyme in the conversion of arachidonic acid to prostaglandins and two isoforms of COX have been characterized, COX-1 and COX-2. Multiple studies have shown that COX-2 is expressed at high levels in colorectal tumours and play a role in colorectal tumorigenesis. Recently it has been reported that selective inhibition of COX-2 inhibits colon cancer cell growth. In this study we investigated the effect of a selective COX-2 inhibitor (JTE-522) on haematogenous metastasis of colon cancer. For this purpose, we selected a murine colon cancer cell line, colon-26, that constitutively expresses the COX-2 protein. The subclone P expressed a high level of COX-2 and the subclone 5 expressed a low level. The colon-26 subclones were injected into the tail vein of BALB/c mice. JTE-522 was given intraperitoneally every day from the day prior to cancer cell injection, and the mice were sacrificed 16 days after cell injection. Lung metastases were compared between groups with and without JTE-522. In the mice injected with subclone P, the number of lung metastatic nodules was significantly reduced in the treated group. However, in the mice injected with subclone 5, there was little difference between the control and the treated groups. These results indicate that there may be a direct link between inhibition of haematogenous metastasis of colon cancer and selective inhibition of COX-2, and that selective COX-2 inhibitors may be a novel class of therapeutic agents not only for colorectal tumorigenesis but also for haematogenous metastasis of colon cancer. © 1999 Cancer Research Campaig

    Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents

    Get PDF
    A chemical reduction method for preparing monodispersed pure-phase copper colloids in water and ethylene glycol has been reported. Owing to the reduction property of ethylene glycol, the reaction rate in ethylene glycol is higher than that in water. In addition, the amount of reducing agent can be reduced largely. Ascorbic acid plays roles as reducing agent and antioxidant of colloidal copper, due to its ability to scavenge free radicals and reactive oxygen molecules. Thermogravimetric results reveal that the as-prepared copper nanoparticles have good stability, and they begin to be oxidized at above 210 °C. Polyvinyl pyrrolidone works both as size controller and polymeric capping agents, because it hinders the nuclei from aggregation through the polar groups, which strongly absorb the copper particles on the surface with coordination bonds

    Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery

    Get PDF
    BACKGROUND: An increase in the number of attendees due to acute gastroenteritis and fever was noted at one hospital emergency room in Taiwan over a seven-day period from July to August, 2001. Molecular and epidemiological surveys were performed to trace the possible source of infection. METHODS: An epidemiological investigation was undertaken to determine the cause of the outbreak. Stool and blood samples were collected according to standard protocols per Center for Disease Control, Taiwan. Typing of the Salmonella isolates from stool, blood, and food samples was performed with serotyping, antibiotypes, and pulsed field gel electrophoresis (PFGE) following XbaI restriction enzyme digestion. RESULTS: Comparison of the number of patients with and without acute gastroenteritis (506 and 4467, respectively) during the six weeks before the outbreak week revealed a significant increase in the number of patients during the outbreak week (162 and 942, respectively) (relative risk (RR): 1.44, 95% confidence interval (CI): 1.22–1.70, P value < 0.001). During the week of the outbreak, 34 of 162 patients with gastroenteritis were positive for Salmonella, and 28 of these 34 cases reported eating the same kind of bread. In total, 28 of 34 patients who ate this bread were positive for salmonella compared to only 6 of 128 people who did not eat this bread (RR: 17.6, 95%CI 7.9–39.0, P < 0.001). These breads were produced by the same bakery and were distributed to six different traditional Chinese markets., Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was isolated from the stool samples of 28 of 32 individuals and from a recalled bread sample. All S. Enteritidis isolates were of the same antibiogram. PFGE typing revealed that all except two of the clinical isolates and the bread isolates were of the same DNA macrorestriction pattern. CONCLUSIONS: The egg-covered bread contaminated with S. Enteritidis was confirmed as the vehicle of infection. Alertness in the emergency room, surveillance by the microbiology laboratory, prompt and thorough investigation to trace the source of outbreaks, and institution of appropriate control measures provide effective control of community outbreaks

    Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation

    Get PDF
    Implantation of biodegradable scaffold is considered as a promising method to treat bone disorders, but knowledge of the dynamic bone repair process is extremely limited. In this study, based on the representative volume cell of a periodic scaffold, the influence of rehabilitation exercise duration per day on the bone repair was investigated by a computational framework. The framework coupled scaffold degradation and bone remodeling. The scaffold degradation was described by a function of stochastic hydrolysis independent of mechanical stimulation, and the bone formation was remodeled by a function of the mechanical stimulation, i.e., strain energy density. Then, numerical simulations were performed to study the dynamic bone repair process. The results showed that the scaffold degradation and the bone formation in the process were competitive. An optimal exercise duration per day emerged. All exercise durations promoted the bone maturation with a final Young's modulus of 1.9 ± 0.3 GPa. The present study connects clinical rehabilitation and fundamental research, and is helpful to understand the bone repair process and further design bone scaffold for bone tissue engineering

    Split T Cell Tolerance against a Self/Tumor Antigen: Spontaneous CD4+ but Not CD8+ T Cell Responses against p53 in Cancer Patients and Healthy Donors

    Get PDF
    Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events

    Successful reduced-intensity SCT from unrelated cord blood in three patients with X-linked SCID

    Get PDF
    We describe three males with X-linked SCID (X-SCID) who were successfully treated by reduced-intensity SCT from unrelated cord blood (CB). Mean age at transplant was 5.7 months (range, 3–9 months). Pre-transplant conditioning for all patients consisted of fludarabine (FLU) (30 mg/m2 per day) from day −7 to day −2 (total dose 180 mg/m2) and BU 4 mg/kg per day from day −3 to day −2 (total dose 8 mg/kg). All CB units were serologically matched at HLA-A, B and DR loci. Although two patients had suffered from fungal or bacterial pneumonia before transplantation, there were no other infectious complications during transplantation. All patients engrafted and achieved 100% donor chimerism. We also confirmed full donor chimerism of both T and B cells. Only one patient developed acute GVHD grade III, which was resolved by increasing the dose of oral corticosteroid. None of the patients has developed chronic GVHD during follow up for 21–77 months. None of the patient received i.v. Ig replacement post transplant, or showed delay in psychomotor development. Reduced-intensity conditioning consisting of FLU and BU and transplantation from unrelated CB was an effective and safe treatment for these patients with X-SCID

    Hypoxia and Prostaglandin E Receptor 4 Signalling Pathways Synergise to Promote Endometrial Adenocarcinoma Cell Proliferation and Tumour Growth

    Get PDF
    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E2. PTGS2 expression and PGE2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE2 regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1–4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells
    corecore