70 research outputs found
Can volunteering in later life reduce the risk of dementia? A 5-year longitudinal study among volunteering and non-volunteering retired seniors
Missing upper incisors: a retrospective study of orthodontic space closure versus implant
Background: The aim of this retrospective study was to compare the esthetic, periodontal, and functional outcomes of orthodontic space closure versus implant substitution in patients with missing maxillary incisors 5 years after completion of treatment. Methods: The study group consisted of ten patients treated with orthodontic space closure (six males, four females, mean age 19 ± 2.1 years at the completion of treatment) and ten patients treated with implant insertion (five males, five females, mean age 20 ± 1.4 years at the time of implant insertion). Tooth mobility, plaque index, probing depth, infraocclusion, open gingival embrasure (black triangle), and temporomandibular joint function were recorded at the 5.6 years follow-up. Self-perceived dental esthetic appearance was also evaluated through a visual analog scale (VAS) questionnaire. T-test was used to evaluate the data. Results: All patients were equally satisfied with the appearance of their teeth 5.6 ± 0.4 years after the completion of treatment. No statistically significant differences were found in relation to the VAS scores of the subjects (P < 0.857). No significant differences were found in tooth mobility, plaque index (P < 0.632), and the prevalence of signs and symptoms of temporomandibular disorders. However, significant infraocclusion was noticed in all implant patients (P < 0.001). Probing depth was also significantly higher in implant patients (P < 0.001). Conclusions: Orthodontic space closure and implant of missing maxillary incisors produced similar, well-accepted esthetic results. None of the treatments impaired temporomandibular joint function. Nevertheless, infraocclusion was evident in implant patients. Space closure patients also showed better periodontal health in comparison with implant patients
Shear bond strength of metallic brackets photo-activated with light-emitting diode (LED) at different exposure times
Large Scale Gene Expression Profiles of Regenerating Inner Ear Sensory Epithelia
Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27KIP and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions
Light-curing of orthodontic bracket adhesive by transillumination through dentine and enamel
- …
