1,646 research outputs found
Emergence of heat extremes attributable to anthropogenic influences
Climate scientists have demonstrated that a substantial fraction of the probability of numerous recent extreme events may be attributed to human-induced climate change. However, it is likely that for temperature extremes occurring over previous decades a fraction of their probability was attributable to anthropogenic influences. We identify the first record-breaking warm summers and years for which a discernible contribution can be attributed to human influence. We find a significant human contribution to the probability of record-breaking global temperature events as early as the 1930s. Since then, all the last 16 record-breaking hot years globally had an anthropogenic contribution to their probability of occurrence. Aerosol-induced cooling delays the timing of a significant human contribution to record-breaking events in some regions. Without human-induced climate change recent hot summers and years would be very unlikely to have occurred.111411Ysciescopu
The Maximal Inverse Seesaw from Operator and Oscillating Asymmetric Sneutrino Dark Matter
The maximal supersymmetric inverse seesaw mechanism (MSIS)
provides a natural way to relate asymmetric dark matter (ADM) with neutrino
physics. In this paper we point out that, MSIS is a natural outcome if one
dynamically realizes the inverse seesaw mechanism in the next-to minimal
supersymmetric standard model (NMSSM) via the dimension-five operator
, with the NMSSM singlet developing TeV scale VEV; it
slightly violates lepton number due to the suppression by the fundamental scale
, thus preserving maximally. The resulting sneutrino is a
distinguishable ADM candidate, oscillating and favored to have weak scale mass.
A fairly large annihilating cross section of such a heavy ADM is available due
to the presence of singlet.Comment: journal versio
A molecular insight into algal-oomycete warfare : cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii
Peer reviewedPublisher PD
The Minimal Solution to the mu/B_mu Problem in Gauge Mediation
We provide a minimal solution to the mu/B_mu problem in the gauge mediated
supersymmetry breaking by introducing a Standard Model singlet filed S with a
mass around the messenger scale which couples to the Higgs and messenger
fields. This singlet is nearly supersymmetric and acquires a relatively small
Vacuum Expectation Value (VEV) from its radiatively generated tadpole term.
Consequently, both mu and B_mu parameters receive the tree-level and one-loop
contributions, which are comparable due to the small S VEV. Because there
exists a proper cancellation in such two kinds of contributions to B_mu, we can
have a viable Higgs sector for electroweak symmetry breaking.Comment: 15 pages, 2 figures, version published on JHE
A massive proto-cluster of galaxies at a redshift of z {\approx} 5.3
Massive clusters of galaxies have been found as early as 3.9 Billion years
(z=1.62) after the Big Bang containing stars that formed at even earlier
epochs. Cosmological simulations using the current cold dark matter paradigm
predict these systems should descend from "proto-clusters" - early
over-densities of massive galaxies that merge hierarchically to form a cluster.
These proto-cluster regions themselves are built-up hierarchically and so are
expected to contain extremely massive galaxies which can be observed as
luminous quasars and starbursts. However, observational evidence for this
scenario is sparse due to the fact that high-redshift proto-clusters are rare
and difficult to observe. Here we report a proto-cluster region 1 billion years
(z=5.3) after the Big Bang. This cluster of massive galaxies extends over >13
Mega-parsecs, contains a luminous quasar as well as a system rich in molecular
gas. These massive galaxies place a lower limit of >4x10^11 solar masses of
dark and luminous matter in this region consistent with that expected from
cosmological simulations for the earliest galaxy clusters.Comment: Accepted to Nature, 16 Pages, 6 figure
Hitting sbottom in natural SUSY
We compare the experimental prospects of direct stop and sbottom pair
production searches at the LHC. Such searches for stops are of great interest
as they directly probe for states that are motivated by the SUSY solution to
the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY
spectrum. Noting that sbottom searches are less experimentally challenging and
scale up in reach directly with the improvement on b-tagging algorithms, we
discuss the interplay of small TeV scale custodial symmetry violation with
sbottom direct pair production searches as a path to obtaining strong sub-TeV
constraints on stops in a natural SUSY scenario. We argue that if a weak scale
natural SUSY spectrum does not exist within the reach of LHC, then hopes for
such a spectrum for large regions of parameter space should sbottom out.
Conversely, the same arguments make clear that a discovery of such a spectrum
is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio
Temperature Dependence of Photoelectrical Properties of Single Selenium Nanowires
Influence of temperature on photoconductivity of single Se nanowires has been studied. Time response of photocurrent at both room temperature and low temperature suggests that the trap states play an important role in the photoelectrical process. Further investigations about light intensity dependence on photocurrent at different temperatures reveal that the trap states significantly affect the carrier generation and recombination. This work may be valuable for improving the device optoelectronic performances by understanding the photoelectrical properties
SU(7) Unification of SU(3)_C*SU(4)_W* U(1)_{B-L}
We propose the SUSY SU(7) unification of the SU(3)_C* SU(4)_W* U(1)_{B-L}
model. Such unification scenario has rich symmetry breaking chains in a
five-dimensional orbifold. We study in detail the SUSY SU(7) symmetry breaking
into SU(3)_C* SU(4)_W* U(1)_{B-L} by boundary conditions in a Randall-Sundrum
background and its AdS/CFT interpretation. We find that successful gauge
coupling unification can be achieved in our scenario. Gauge unification favors
low left-right and unification scales with tree-level \sin^2\theta_W=0.15. We
use the AdS/CFT dual of the conformal supersymmetry breaking scenario to break
the remaining N=1 supersymmetry. We employ AdS/CFT to reproduce the NSVZ
formula and obtain the structure of the Seiberg duality in the strong coupling
region for 3/2N_c<N_F<3N_C. We show that supersymmetry is indeed broken in the
conformal supersymmetry breaking scenario with a vanishing singlet vacuum
expectation value.Comment: 25 pages, 1 figure
String theoretic QCD axions in the light of PLANCK and BICEP2
The QCD axion solving the strong CP problem may originate from antisymmetric
tensor gauge fields in compactified string theory, with a decay constant around
the GUT scale. Such possibility appears to be ruled out now by the detection of
tensor modes by BICEP2 and the PLANCK constraints on isocurvature density
perturbations. A more interesting and still viable possibility is that the
string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry.
In such case, the axion decay constant can be much lower than the GUT scale if
moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and
U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to
a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern
of such models during the inflationary epoch with the Hubble expansion rate
10^{14} GeV, and identify the range of the QCD axion decay constant, as well as
the corresponding relic axion abundance, consistent with known cosmological
constraints. In addition to the case that the PQ symmetry is restored during
inflation, there are other viable scenarios, including that the PQ symmetry is
broken during inflation at high scales around 10^{16}-10^{17} GeV due to a
large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the
present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the
present value larger than 10^{12} GeV requires a fine-tuning of the axion
misalignment angle. We also discuss the implications of our results for the
size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full
anharmonic effects, references added, version accepted for publication in
JHE
Understanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control
BACKGROUND: While neural systems are known to respond to chemical and electrical stimulation, the effect of mechanics on these highly sensitive cells is still not well understood. The ability to examine the effects of mechanics on these cells is limited by existing approaches, although their overall response is intimately tied to cell-matrix interactions. Here, we offer a novel method, which we used to investigate stretch-activated mechanotransduction on nerve terminals of sensory neurons through an elastomeric interface. METHODOLOGY/PRINCIPAL FINDINGS: To apply mechanical force on neurites, we cultured dorsal root ganglion neurons on an elastic substrate, polydimethylsiloxane (PDMS), coated with extracellular matrices (ECM). We then implemented a controlled indentation scheme using a glass pipette to mechanically stimulate individual neurites that were adjacent to the pipette. We used whole-cell patch clamping to record the stretch-activated action potentials on the soma of the single neurites to determine the mechanotransduction-based response. When we imposed specific mechanical force through the ECM, we noted a significant neuronal action potential response. Furthermore, because the mechanotransduction cascade is known to be directly affected by the cytoskeleton, we investigated the cell structure and its effects. When we disrupted microtubules and actin filaments with nocodozale or cytochalasin-D, respectively, the mechanically induced action potential was abrogated. In contrast, when using blockers of channels such as TRP, ASIC, and stretch-activated channels while mechanically stimulating the cells, we observed almost no change in action potential signalling when compared with mechanical activation of unmodified cells. CONCLUSIONS/SIGNIFICANCE: These results suggest that sensory nerve terminals have a specific mechanosensitive response that is related to cell architecture
- …