102 research outputs found
Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand.
The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions
Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the Field
Bacillus thuringiensis (Bt) and its insecticidal toxins are widely exploited in microbial biopesticides and genetically modified crops. Its population biology is, however, poorly understood. Important issues for the safe, sustainable exploitation of Bt include understanding how selection maintains expression of insecticidal toxins in nature, whether entomopathogenic Bt is ecologically distinct from related human pathogens in the Bacillus cereus group, and how the use of microbial pesticides alters natural bacterial populations. We addressed these questions with a MLST scheme applied to a field experiment in which we excluded/added insect hosts and microbial pesticides in a factorial design. The presence of insects increased the density of Bt/B. cereus in the soil and the proportion of strains expressing insecticidal toxins. We found a near-epidemic population structure dominated by a single entomopathogenic genotype (ST8) in sprayed and unsprayed enclosures. Biopesticidal ST8 proliferated in hosts after spraying but was also found naturally associated with leaves more than any other genotype. In an independent experiment several ST8 isolates proved better than a range of non-pathogenic STs at endophytic and epiphytic colonization of seedlings from soil. This is the first experimental demonstration of Bt behaving as a specialized insect pathogen in the field. These data provide a basis for understanding both Bt ecology and the influence of anthropogenic factors on Bt populations. This natural population of Bt showed habitat associations and a population structure that differed markedly from previous MLST studies of less ecologically coherent B. cereus sample collections. The host-specific adaptations of ST8, its close association with its toxin plasmid and its high prevalence within its clade are analogous to the biology of Bacillus anthracis. This prevalence also suggests that selection for resistance to the insecticidal toxins of ST8 will have been stronger than for other toxin classes
Diversity and Efficiency of Rhizobia Communities from Iron Mining Areas Using Cowpea as a Trap Plant
FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium.
BACKGROUND: Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. METHODS: Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. RESULTS: Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. CONCLUSION: Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2
Comparison of protein patterns in non-mycorrhizal and vesicular-arbuscular mycorrhizal roots of red clover
Compatibility of systemic acquired resistance and microbial biocontrol for suppression of plant disease in a laboratory assay
- …
