519 research outputs found
Pharmacokinetics of ivermectin after oral and intravenous administration in Biłgorajska geese (Anser anser domesticus)
Aims To assess the pharmacokinetic profile of ivermectin in Bilgorajska geese (Anser anser domesticus) after single I/V or oral administration, in order to compare these routes of administration and assess oral bioavailability. Methods Ten healthy male geese were used in a single-dose, two-phase study with a 3-month washout period between phases. In the first phase, all geese were given 0.2 mg/kg I/V ivermectin, while in the second phase they were treated orally with the same dosage. Blood samples were collected at selected time points up to 480 hours after each administration. Samples were purified using protein precipitation and drug concentration was quantified using HPLC. The analytical method was validated on blank goose plasma and was characterised by an optimal linearity and a limit of quantification of 0.025 mu g/mL. The pharmacokinetic analysis was carried out using a non-compartmental approach. Results The drug was quantifiable up to 240 hours after I/V administration, while after oral treatment it was quantifiable up to 144 hours in most of the geese. The elimination half-life of ivermectin was approximately 3.8 (95% CI = 1.98-7.92; p = 0.027) times higher after I/V administration compared to oral administration. Moreover, the area under the curve from zero to the last detectable timepoint was 6.4 (95% CI = 4.65-8.74; p < 0.001) hours greater after I/V than oral administration. This difference led to a bioavailability of 20.38 (SD 5.92) %. Conclusions Following oral administration in geese, ivermectin has a bioavailability of approximately 20%. Further research on the action of ivermectin in the gastrointestinal tract is required along with assessment of tissue residues to allow calculation of withdrawal time to ensure consumer safety
Total Cross Sections for Neutron Scattering
Measurements of neutron total cross-sections are both extensive and extremely
accurate. Although they place a strong constraint on theoretically constructed
models, there are relatively few comparisons of predictions with experiment.
The total cross-sections for neutron scattering from O and Ca are
calculated as a function of energy from ~MeV laboratory energy with a
microscopic first order optical potential derived within the framework of the
Watson expansion. Although these results are already in qualitative agreement
with the data, the inclusion of medium corrections to the propagator is
essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig
Fast-Neutron Activation of Long-Lived Isotopes in Enriched Ge
We measured the production of \nuc{57}{Co}, \nuc{54}{Mn}, \nuc{68}{Ge},
\nuc{65}{Zn}, and \nuc{60}{Co} in a sample of Ge enriched in isotope 76 due to
high-energy neutron interactions. These isotopes, especially \nuc{68}{Ge}, are
critical in understanding background in Ge detectors used for double-beta decay
experiments. They are produced by cosmogenic-neutron interactions in the
detectors while they reside on the Earth's surface. These production rates were
measured at neutron energies of a few hundred MeV. We compared the measured
production to that predicted by cross-section calculations based on CEM03.02.
The cross section calculations over-predict our measurements by approximately a
factor of three depending on isotope. We then use the measured cosmic-ray
neutron flux, our measurements, and the CEM03.02 cross sections to predict the
cosmogenic production rate of these isotopes. The uncertainty in extrapolating
the cross section model to higher energies dominates the total uncertainty in
the cosmogenic production rate.Comment: Revised after feedback and further work on extrapolating cross
sections to higher energies in order to estimate cosmic production rates.
Also a numerical error was found and fixed in the estimate of the Co-57
production rat
Electroproduction of the d* dibaryon
The unpolarized cross section for the electroproduction of the isoscalar
di-delta dibaryon is calculated for deuteron target using a
simple picture of elastic electron-baryon scattering from the and the components of the deuteron. The calculated
differential cross section at the electron lab energy of 1 GeV has the value of
about 0.24 (0.05) nb/sr at the lab angle of 10 (30) for the
Bonn B potential when the dibaryon mass is taken to be 2.1 GeV. The cross
section decreases rapidly with increasing dibaryon mass. A large calculated
width of 40 MeV for combined with a small
experimental upper bound of 0.08 MeV for the decay width appears to have
excluded any low-mass model containing a significant admixture of the
configuration.Comment: 11 journal-style pages, 8 figure
The s Process: Nuclear Physics, Stellar Models, Observations
Nucleosynthesis in the s process takes place in the He burning layers of low
mass AGB stars and during the He and C burning phases of massive stars. The s
process contributes about half of the element abundances between Cu and Bi in
solar system material. Depending on stellar mass and metallicity the resulting
s-abundance patterns exhibit characteristic features, which provide
comprehensive information for our understanding of the stellar life cycle and
for the chemical evolution of galaxies. The rapidly growing body of detailed
abundance observations, in particular for AGB and post-AGB stars, for objects
in binary systems, and for the very faint metal-poor population represents
exciting challenges and constraints for stellar model calculations. Based on
updated and improved nuclear physics data for the s-process reaction network,
current models are aiming at ab initio solution for the stellar physics related
to convection and mixing processes. Progress in the intimately related areas of
observations, nuclear and atomic physics, and stellar modeling is reviewed and
the corresponding interplay is illustrated by the general abundance patterns of
the elements beyond iron and by the effect of sensitive branching points along
the s-process path. The strong variations of the s-process efficiency with
metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
High-Throughput In Vitro, Ex Vivo, and In Vivo Screen of Adeno-Associated Virus Vectors Based on Physical and Functional Transduction
Adeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications. Reporter expression assays are the most commonly used methods for determining vector fitness. However, such approaches are time consuming and become impractical when evaluating a large number of variants. Limited access to primary human tissues or challenging model systems further complicates vector testing. To address this problem, convenient high-throughput methods based on next-generation sequencing (NGS) are being developed. To this end, we built an AAV Testing Kit that allows inherent flexibility in regard to number and type of AAV variants included, and is compatible with in vitro, ex vivo, and in vivo applications. The Testing Kit presented here consists of a mix of 30 known AAVs where each variant encodes a CMV-eGFP cassette and a unique barcode in the 3′-untranslated region of the eGFP gene, allowing NGS-barcode analysis at both the DNA and RNA/cDNA levels. To validate the AAV Testing Kit, individually packaged barcoded variants were mixed at an equal ratio and used to transduce cells/tissues of interest. DNA and RNA/cDNA were extracted and subsequently analyzed by NGS to determine the physical/functional transduction efficiencies. We were able to assess the transduction efficiencies of immortalized cells, primary cells, and induced pluripotent stem cells in vitro, as well as in vivo transduction in naïve mice and a xenograft liver model. Importantly, while our data validated previously reported transduction characteristics of individual capsids, we also identified novel previously unknown tropisms for some AAV variants
Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC
The ICARUS collaboration has demonstrated, following the operation of a 600
ton (T600) detector at shallow depth, that the technique based on liquid Argon
TPCs is now mature. The study of rare events, not contemplated in the Standard
Model, can greatly benefit from the use of this kind of detectors. In
particular, a deeper understanding of atmospheric neutrino properties will be
obtained thanks to the unprecedented quality of the data ICARUS provides.
However if we concentrate on the T600 performance, most of the
charged current sample will be partially contained, due to the reduced
dimensions of the detector. In this article, we address the problem of how well
we can determine the kinematics of events having partially contained tracks.
The analysis of a large sample of atmospheric muons collected during the T600
test run demonstrate that, in case the recorded track is at least one meter
long, the muon momentum can be reconstructed by an algorithm that measures the
Multiple Coulomb Scattering along the particle's path. Moreover, we show that
momentum resolution can be improved by a factor two using an algorithm based on
the Kalman Filtering technique
Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235
The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV – 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data
- …