4,244 research outputs found
Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using 1 m lasers
Collisionless shock acceleration of protons and C ions has been
achieved by the interaction of a 10 W/cm, 1 m laser with a
near-critical density plasma. Ablation of the initially solid density target by
a secondary laser allowed for systematic control of the plasma profile. This
enabled the production of beams with peaked spectra with energies of 10-18
MeV/a.m.u. and energy spreads of 10-20 with up to 3x10 particles within
these narrow spectral features. The narrow energy spread and similar velocity
of ion species with different charge-to-mass ratio are consistent with
acceleration by the moving potential of a shock wave. Particle-in-cell
simulations show shock accelerated beams of protons and C ions with
energy distributions consistent with the experiments. Simulations further
indicate the plasma profile determines the trade-off between the beam charge
and energy and that with additional target optimization narrow energy spread
beams exceeding 100 MeV/a.m.u. can be produced using the same laser conditions.Comment: Accepted for publication in Physical Review Accelerators and Beam
Pulsar Constraints on Neutron Star Structure and Equation of State
With the aim of constraining the structural properties of neutron stars and
the equation of state of dense matter, we study sudden spin-ups, glitches,
occurring in the Vela pulsar and in six other pulsars. We present evidence that
glitches represent a self-regulating instability for which the star prepares
over a waiting time. The angular momentum requirements of glitches in Vela
indicate that at least 1.4% of the star's moment of inertia drives these
events. If glitches originate in the liquid of the inner crust, Vela's
`radiation radius' must exceed ~12 km for a mass of 1.4 solar masses.
Observational tests of whether other neutron stars obey this constraint will be
possible in the near future.Comment: 5 pages, including figures. To appear in Physical Review Letter
Proton and Helium Spectra from the CREAM-III Flight
Primary cosmic-ray elemental spectra have been measured with the
balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The
third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic
season. Energies of incident particles above 1 TeV are measured with a
calorimeter. Individual elements are clearly separated with a charge resolution
of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei,
respectively, using two layers of silicon charge detectors. The measured proton
and helium energy spectra at the top of the atmosphere are harder than other
existing measurements at a few tens of GeV. The relative abundance of protons
to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio
is considerably smaller than other measurements at a few tens of GeV/n. The
spectra become softer above ~20 TeV. However, our statistical uncertainties are
large at these energies and more data are needed
Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound UZn
We have performed magnetization measurements at high magnetic fields of up to
53 T on single crystals of a uranium heavy-fermion compound UZn
grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el
temperature = 9.7 K, a metamagnetic transition is found at
32 T for the field along the [110] direction (-axis). The
magnetic phase diagram for the field along the [110] direction is
given. The magnetization curve shows a nonlinear increase at 35
T in the paramagnetic state above up to a characteristic
temperature where the magnetic susceptibility or
electrical resistivity shows a maximum value. This metamagnetic behavior of the
magnetization at is discussed in comparison with the metamagnetic
magnetism of the heavy-fermion superconductors UPt, URuSi, and
UPdAl. We have also carried out high-pressure resistivity measurement
on UZn using a diamond anvil cell up to 8.7 GPa. Noble gas argon was
used as a pressure-transmitting medium to ensure a good hydrostatic
environment. The N\'{e}el temperature is almost
pressure-independent up to 4.7 GPa and starts to increase in the
higher-pressure region. The pressure dependences of the coefficient of the
term in the electrical resistivity , the antiferromagnetic gap
, and the characteristic temperature are
discussed. It is found that the effect of pressure on the electronic states in
UZn is weak compared with those in the other heavy fermion
compounds
Slowly Rotating General Relativistic Superfluid Neutron Stars with Relativistic Entrainment
Neutron stars that are cold enough should have two or more
superfluids/supercondutors in their inner crusts and cores. The implication of
superfluidity/superconductivity for equilibrium and dynamical neutron star
states is that each individual particle species that forms a condensate must
have its own, independent number density current and equation of motion that
determines that current. An important consequence of the quasiparticle nature
of each condensate is the so-called entrainment effect, i.e. the momentum of a
condensate is a linear combination of its own current and those of the other
condensates. We present here the first fully relativistic modelling of slowly
rotating superfluid neutron stars with entrainment that is accurate to the
second-order in the rotation rates. The stars consist of superfluid neutrons,
superconducting protons, and a highly degenerate, relativistic gas of
electrons. We use a relativistic - mean field model for the
equation of state of the matter and the entrainment. We determine the effect of
a relative rotation between the neutrons and protons on a star's total mass,
shape, and Kepler, mass-shedding limit.Comment: 30 pages, 10 figures, uses ReVTeX
On Bubble Growth and Droplet Decay in Cosmological Phase Transitions
We study spherically symmetric bubble growth and droplet decay in first order
cosmological phase transitions, using a numerical code including both the
complete hydrodynamics of the problem and a phenomenological model for the
microscopic entropy producing mechanism at the phase transition surface. The
small-scale effects of finite wall width and surface tension are thus
consistently incorporated. We verify the existence of the different
hydrodynamical growth modes proposed recently and investigate the problem of a
decaying quark droplet in the QCD phase transition. We find that the decaying
droplet leaves behind no rarefaction wave, so that any baryon number
inhomogeneity generated previously should survive the decay.Comment: 10 pages (revtex), 10 figures as uuencoded postscrip
Hydrodynamic Stability Analysis of Burning Bubbles in Electroweak Theory and in QCD
Assuming that the electroweak and QCD phase transitions are first order, upon
supercooling, bubbles of the new phase appear. These bubbles grow to
macroscopic sizes compared to the natural scales associated with the Compton
wavelengths of particle excitations. They propagate by burning the old phase
into the new phase at the surface of the bubble. We study the hydrodynamic
stability of the burning and find that for the velocities of interest for
cosmology in the electroweak phase transition, the shape of the bubble wall is
stable under hydrodynamic perturbations. Bubbles formed in the cosmological QCD
phase transition are found to be a borderline case between stability and
instability.Comment: preprint # SLAC-PUB-5943, SCIPP 92/56 38 pages, 10 figures (submitted
via `uufiles'), phyzzx format minor snafus repaire
Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines
We present new results from accurate and fully general-relativistic
simulations of the coalescence of unmagnetized binary neutron stars with
various mass ratios. The evolution of the stars is followed through the
inspiral phase, the merger and prompt collapse to a black hole, up until the
appearance of a thick accretion disk, which is studied as it enters and remains
in a regime of quasi-steady accretion. Although a simple ideal-fluid equation
of state with \Gamma=2 is used, this work presents a systematic study within a
fully general relativistic framework of the properties of the resulting
black-hole--torus system produced by the merger of unequal-mass binaries. More
specifically, we show that: (1) The mass of the torus increases considerably
with the mass asymmetry and equal-mass binaries do not produce significant tori
if they have a total baryonic mass M_tot >~ 3.7 M_sun; (2) Tori with masses
M_tor ~ 0.2 M_sun are measured for binaries with M_tot ~ 3.4 M_sun and mass
ratios q ~ 0.75-0.85; (3) The mass of the torus can be estimated by the simple
expression M_tor(q, M_tot) = [c_1 (1-q) + c_2](M_max-M_tot), involving the
maximum mass for the binaries and coefficients constrained from the
simulations, and suggesting that the tori can have masses as large as M_tor ~
0.35 M_sun for M_tot ~ 2.8 M_sun and q ~ 0.75-0.85; (4) Using a novel technique
to analyze the evolution of the tori we find no evidence for the onset of
non-axisymmetric instabilities and that very little, if any, of their mass is
unbound; (5) Finally, for all the binaries considered we compute the complete
gravitational waveforms and the recoils imparted to the black holes, discussing
the prospects of detection of these sources for a number of present and future
detectors.Comment: 35 pages; small changes to match the published versio
Experiences of mental illness stigma, prejudice and discrimination: A review of measures
Background: There has been a substantial increase in research on mental illness related stigma over the past 10 years, with many measures in use. This study aims to review current practice in the survey measurement of mental illness stigma, prejudice and discrimination experienced by people who have personal experience of mental illness. We will identify measures used, their characteristics and psychometric properties. Method. A narrative literature review of survey measures of mental illness stigma was conducted. The databases Medline, PsychInfo and the British Nursing Index were searched for the period 1990-2009. Results: 57 studies were included in the review. 14 survey measures of mental illness stigma were identified. Seven of the located measures addressed aspects of perceived stigma, 10 aspects of experienced stigma and 5 aspects of self-stigma. Of the identified studies, 79% used one of the measures of perceived stigma, 46% one of the measures of experienced stigma and 33% one of the measures of self-stigma. All measures presented some information on psychometric properties. Conclusions: The review was structured by considering perceived, experienced and self stigma as separate but related constructs. It provides a resource to aid researchers in selecting the measure of mental illness stigma which is most appropriate to their purpose. © 2010 Brohan et al; licensee BioMed Central Ltd
Field-induced inter-planar correlations in the high-temperature superconductor La1.88Sr0.12CuO4
We present neutron scattering studies of the inter-planar correlations in the
high-temperature superconductor La1.88Sr0.12CuO4 (T_c=27 K). The correlations
are studied both in a magnetic field applied perpendicular to the CuO2 planes,
and in zero field under different cooling conditions. We find that the effect
of the magnetic field is to increase the magnetic scattering signal at all
values of the out-of-plane wave vector L, indicating an overall increase of the
magnetic moments. In addition, weak correlations between the copper oxide
planes develop in the presence of a magnetic field. This effect is not taken
into account in previous reports on the field effect of magnetic scattering,
since usually only L~0 is probed. Interestingly, the results of quench-cooling
the sample are similar to those obtained by applying a magnetic field. Finally,
a small variation of the incommensurate peak position as a function of L
provides evidence that the incommensurate signal is twinned with the dominating
and sub-dominant twin displaying peaks at even or odd L, respectively.Comment: 8 pages, 5 figure
- …