902 research outputs found

    The Hipparcos Transit Data: What, why and how?

    Get PDF
    The Hipparcos Transit Data are a collection of partially reduced, fully calibrated observations of (mostly) double and multiple stars obtained with the ESA Hipparcos astrometry satellite. The data are publicly available, as part of the CD-ROM set distributed with the Hipparcos and Tycho Catalogues (ESA SP--1200, 1997), for about a third of the Hipparcos Catalogue entries including all confirmed or suspected non-single stars. The Transit Data consist of signal modulation parameters derived from the individual transits of the targets across the Hipparcos focal grid. The Transit Data permit re-reduction of the satellite data for individual objects, using arbitrarily complex object models in which time-variable photometric as well as geometric characteristics may be taken into account. We describe the structure and contents of the Transit Data files and give examples of how the data can be used. Some of the applications use standard astronomical software: Difmap or AIPS for aperture synthesis imaging, and GaussFit for detailed model fitting. Fortran code converting the data into formats suitable for these application programs has been made public in order to encourage and facilitate the use of Hipparcos Transit Data.Comment: A&AS, accepted for publication, 17 pages, 9 figures, 1 Table, Software available via http://www.astro.lu.se/~lennart/TD/index.html, Figures 4, 5, 6 and 7 need to copied separately, A complete postscript file can be found at http://www.astro.lu.se/~lennart/TD/ds1699.ps.g

    Reminiscences of B.O. Dodge and the beginnings of Neurospora Genetics

    Get PDF
    Reminiscences of B.O. Dodge and the beginnings of Neurospor

    Biology and biochemistry : thesis and antithesis

    Get PDF
    CARL C. LINDEGREN, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS

    A global mismatch in the protection of multiple marine biodiversity components and ecosystem services

    Get PDF
    The global loss of biodiversity threatens unique biota and the functioning and services of ecosystems essential for human wellbeing. To safeguard biodiversity and ecosystem services, designating protected areas is crucial; yet the extent to which the existing placement of protection is aligned to meet these conservation priorities is questionable, especially in the oceans. Here we investigate and compare global patterns of multiple biodiversity components (taxonomic, phylogenetic and functional), ecosystem services and human impacts, with the coverage of marine protected areas across a nested spatial scale. We demonstrate a pronounced spatial mismatch between the existing degree of protection and all the conservation priorities above, highlighting that neither the world’s most diverse, nor the most productive ecosystems are currently the most protected ecosystems. Furthermore, we show that global patterns of biodiversity, ecosystem services and human impacts are poorly correlated, hence complicating the identification of generally applicable spatial prioritization schemes. However, a hypothetical “consensus approach” would have been able to address all these conservation priorities far more effectively than the existing degree of protection, which at best is only marginally better than a random expectation. Therefore, a holistic perspective is needed when designating an appropriate degree of protection of marine conservation priorities worldwide

    Radial velocities for the Hipparcos-Gaia Hundred-Thousand-Proper-Motion project

    Full text link
    (abridged) The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113500 stars using a 23-year baseline. The proper motions will use the Hipparcos data, with epoch 1991.25, as first epoch and the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 muas/yr, depending on stellar magnitude. Depending on the characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence level. We also identify 109 stars for which radial velocities are currently unknown yet need to be acquired to meet the 68.27% confidence level. To satisfy the radial-velocity requirements coming from our study will be a daunting task consuming a significant amount of spectroscopic telescope time. Fortunately, the follow-up spectroscopy is not time-critical since the HTPM proper motions can be corrected a posteriori once (improved) radial velocities become available.Comment: Accepted in A&

    Gaia Data Processing Architecture

    Get PDF
    Gaia is ESA's ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.Comment: 10 Pages, 2 figures. To appear in ADASS XVI Proceeding

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure

    Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades

    Get PDF
    We show that the errors in the Hipparcos parallaxes towards the Pleiades and the Hyades open clusters are spatially correlated over angular scales of 2 to 3 deg, with an amplitude of up to 2 mas. This correlation is stronger than expected based on the analysis of the Hipparcos catalog. We predict the parallaxes of individual cluster members, pi_pm, from their Hipparcos proper motions, assuming that all cluster members have the same space velocity. We compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are significant spatial correlations in pi_Hip. We derive a distance modulus to the Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This value, agrees very well with the distance modulus of 5.60 +- 0.04 mag determined using the main-sequence fitting technique, compared with the value of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the Pleiades members. We show that the difference between the main-sequence fitting distance and the Hipparcos parallax distance can arise from spatially correlated errors in the Hipparcos parallaxes of individual Pleiades members. Although the Hipparcos parallax errors towards the Hyades are spatially correlated in a manner similar to those of the Pleiades, the center of the Hyades is located on a node of this spatial structure. Therefore, the parallax errors cancel out when the average distance is estimated, leading to a mean Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate that these spatial correlations are also responsible for the discrepant distances that are inferred using the mean Hipparcos parallaxes to some open clusters. Finally, we note that our conclusions are based on a purely geometric method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for publication in Ap
    • 

    corecore