21,021 research outputs found
Effective interactions from q-deformed inspired transformations
From the mass term for the transformed quark fields, we obtain effective
contact interactions of the NJL type. The parameters of the model that maps a
system of non-interacting transformed fields into quarks interacting via NJL
contact terms are discussed
Influence of Small-Scale Inhomogeneities on the Cosmological Consistency Tests
The current cosmological dark sector (dark matter plus dark energy) is
challenging our comprehension about the physical processes taking place in the
Universe. Recently, some authors tried to falsify the basic underlying
assumptions of such dark matter-dark energy paradigm. In this Letter, we show
that oversimplifications of the measurement process may produce false positives
to any consistency test based on the globally homogeneous and isotropic LCDM
model and its expansion history based on distance measurements. In particular,
when local inhomogeneity effects due to clumped matter or voids are taken into
account, an apparent violation of the basic assumptions ("Copernican
Principle") seems to be present. Conversely, the amplitude of the deviations
also probes the degree of reliability underlying the phenomenological
Dyer-Roeder procedure by confronting its predictions with the accuracy of the
weak lensing approach. Finally, a new method is devised to reconstruct the
effects of the inhomogeneities in a LCDM model, and some suggestions of how to
distinguish between clumpiness (or void) effects from different cosmologies are
discussed.Comment: 18 pages, 2 figures. Improved version accepted for publication as a
Letter in MNRA
Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach
Light is affected by local inhomogeneities in its propagation, which may
alter distances and so cosmological parameter estimation. In the era of
precision cosmology, the presence of inhomogeneities may induce systematic
errors if not properly accounted. In this vein, a new interpretation of the
conventional Dyer-Roeder (DR) approach by allowing light received from distant
sources to travel in regions denser than average is proposed. It is argued that
the existence of a distribution of small and moderate cosmic voids (or "black
regions") implies that its matter content was redistributed to the homogeneous
and clustered matter components with the former becoming denser than the cosmic
average in the absence of voids. Phenomenologically, this means that the DR
smoothness parameter (denoted here by ) can be greater than unity,
and, therefore, all previous analyses constraining it should be rediscussed
with a free upper limit. Accordingly, by performing a statistical analysis
involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a
flat CDM model we obtain for the extended parameter,
(). The effects of are also
analyzed for generic CDM models and flat XCDM cosmologies. For both
models, we find that a value of greater than unity is able to
harmonize SNe Ia and cosmic microwave background observations thereby
alleviating the well-known tension between low and high redshift data. Finally,
a simple toy model based on the existence of cosmic voids is proposed in order
to justify why can be greater than unity as required by supernovae
data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches
version published as a Brief Report in Phys. Rev.
Comment on "Constraining the smoothness parameter and dark energy using observational H(z) data"
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125
(2011)] about constraints on the smoothness parameter and dark energy
models using observational data. It is argued here that their procedure
is conceptually inconsistent with the basic assumptions underlying the adopted
Dyer-Roeder approach. In order to properly quantify the influence of the
data on the smoothness parameter, a -test involving a sample
of SNe Ia and data in the context of a flat CDM model is
reanalyzed. This result is confronted with an earlier approach discussed by
Santos et al. (2008) without data. In the () plane, it
is found that such parameters are now restricted on the intervals and within 95.4% confidence
level (2), and, therefore, fully compatible with the homogeneous case.
The basic conclusion is that a joint analysis involving data can
indirectly improve our knowledge about the influence of the inhomogeneities.
However, this happens only because the data provide tighter constraints
on the matter density parameter .Comment: 3 pages, 1 figure, submitted to Research in Astronomy and
Astrophysic
Is CDM an effective CCDM cosmology?
We show that a cosmology driven by gravitationally induced particle
production of all non-relativistic species existing in the present Universe
mimics exactly the observed flat accelerating CDM cosmology with just
one dynamical free parameter. This kind of scenario includes the creation cold
dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a
particular case and also provides a natural reduction of the dark sector since
the vacuum component is not needed to accelerate the Universe. The new cosmic
scenario is equivalent to CDM both at the background and perturbative
levels and the associated creation process is also in agreement with the
universality of the gravitational interaction and equivalence principle.
Implicitly, it also suggests that the present day astronomical observations
cannot be considered the ultimate proof of cosmic vacuum effects in the evolved
Universe because CDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new
references and typo correction
On the q-deformation of the NJL model
Using a q-deformed fermionic algebra we perform explicitly a deformation of
the Nambu-Jona-Lasinio (NJL) Hamiltonian. In the Bogoliubov-Valatin approach we
obtain the deformed version of the functional for the total energy, which is
minimized to obtain the corresponding gap equation. The breaking of chiral
symmetry and its restoration in the limit are then discussed.Comment: 5 eps figure
Parameterized Complexity of Equitable Coloring
A graph on vertices is equitably -colorable if it is -colorable and
every color is used either or times.
Such a problem appears to be considerably harder than vertex coloring, being
even for cographs and interval graphs.
In this work, we prove that it is for block
graphs and for disjoint union of split graphs when parameterized by the number
of colors; and for -free interval graphs
when parameterized by treewidth, number of colors and maximum degree,
generalizing a result by Fellows et al. (2014) through a much simpler
reduction.
Using a previous result due to Dominique de Werra (1985), we establish a
dichotomy for the complexity of equitable coloring of chordal graphs based on
the size of the largest induced star.
Finally, we show that \textsc{equitable coloring} is when
parameterized by the treewidth of the complement graph
Counterrotation in magnetocentrifugally driven jets and other winds
Rotation measurement in jets from T Tauri stars is a rather difficult task.
Some jets seem to be rotating in a direction opposite to that of the underlying
disk, although it is not yet clear if this affects the totality or part of the
outflows. On the other hand, Ulysses data also suggest that the solar wind may
rotate in two opposite ways between the northern and southern hemispheres. We
show that this result is not as surprising as it may seem and that it emerges
naturally from the ideal MHD equations. Specifically, counterrotating jets
neither contradict the magnetocentrifugal driving of the flow nor prevent
extraction of angular momentum from the disk. The demonstration of this result
is shown by combining the ideal MHD equations for steady axisymmetric flows.
Provided that the jet is decelerated below some given threshold beyond the
Alfven surface, the flow will change its direction of rotation locally or
globally. Counterrotation is also possible for only some layers of the outflow
at specific altitudes along the jet axis. We conclude that the counterrotation
of winds or jets with respect to the source, star or disk, is not in
contradiction with the magnetocentrifugal driving paradigm. This phenomenon may
affect part of the outflow, either in one hemisphere, or only in some of the
outflow layers. From a time-dependent simulation, we illustrate this effect and
show that it may not be permanent.Comment: To appear in ApJ
- …