52 research outputs found
Large scale shell model calculations for odd-odd Mn isotopes
Large scale shell model calculations have been carried out for odd-odd
Mn isotopes in two different model spaces. First set of calculations
have been carried out in full shell valence space with two recently
derived shell interactions namely GXPF1A and KB3G treating Ca
as core. The second set of calculations have been performed in
valence space with the interaction treating Ca as core and
imposing a truncation by allowing up to a total of six particle excitations
from the 0f orbital to the upper orbitals for protons and
from the upper orbitals to the 0g orbital for neutron. For
low-lying states in Mn, the KB3G and GXPF1A both predicts good results
and for Mn, KB3G is much better than GXPF1A. For negative parity and
high-spin positive parity states in both isotopes interaction is
required. Experimental data on Mn is sparse and therefore it is not
possible to make any definite conclusions. More experimental data on negative
parity states is needed to ascertain the importance of 0g and higher
orbitals in neutron rich Mn isotopes.Comment: 5 pages, 4 figures, Submitted to Eur. Phys. J.
β -decay half-lives of neutron-rich nuclides in the A=100-110 mass region
β-decay half-lives of neutron-rich nuclides in the A=100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement
Total absorption spectroscopy of the β decay of Zr 101,102 and Tc 109
20 pags., 9 figs., 5 tabs.The β decay of Zr101,102 and Tc109 was studied using the technique of total absorption spectroscopy. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) (SuN) detector in the first-ever application of total absorption spectroscopy with a fast beam produced via projectile fragmentation. The β-decay feeding intensity and Gamow-Teller transition strength distributions were extracted for these three decays. The extracted distributions were compared to three different quasiparticle random-phase approximation (QRPA) models based on different mean-field potentials. A comparison with calculations from one of the QRPA models was performed to learn about the ground-state shape of the parent nucleus. For Zr101 and Zr102, calculations assuming a pure shape configuration (oblate or prolate) were not able to reproduce the extracted distributions. These results may indicate that some type of mixture between oblate and prolate shapes is necessary to reproduce the extracted distributions. For Tc109, a comparison of the extracted distributions with QRPA calculations suggests a dominant oblate configuration. The other two QRPA models are commonly used to provide β-decay properties in r-process network calculations. This work shows the importance of making comparisons between the experimental and theoretical β-decay distributions, rather than just half-lives and β-delayed neutron emission probabilities, as close to the r-process path as possible.A.A. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. FPA2014-52823-C2-1-P, and No. FPA2017-83946-C2-1-P and the program Severo Ochoa (SEV-2014-0398). P.S. acknowledges support from MCIU/AEI/FEDER,UE (Spain) under Contract No. PGC2018-093636-B-I00. S.V. acknowledges support from
Czech Science Foundation Project No. 19-14048 and the Charles University Project No. UNCE/SCI/013. This work was supported by the National Science Foundation under Grants No. PHY 1565546 (NSCL), No. PHY 1430152 (JINA-CEE), and No. PHY 1350234 (CAREER). This material is based upon work supported by the Department of
Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Awards No. DE-NA0003180 and/or No. DE-NA000097
Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni
© 2016 The Author(s) Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons
β-decay of odd-A Ti57 and V59
The β-decay of odd-A, neutron-rich Ti57 and V59 are studied. More precise β-decay half-lives of 98±5 and 97±2 ms are deduced for Ti57 and V59, respectively. In addition, β-delayed γ-ray spectroscopy is used to deduce β-decay branching ratios and establish the low-energy-level structures of the daughter nuclides. The new data for levels in V57 and Cr59 are compared with the results of shell-model calculations completed in the full pf model space. Both V57 and Cr59 show evidence of modest oblate deformation near the ground state
The analysis of predictability of alpha-decay half-life formulae and the alpha partial half-lives of some exotic nuclei
The predictabilities of the three alpha-decay half-life formulae, the Royer
GLDM, the Viola-Seaborg and the Sobiczewski-Parkhomenko formulae, have been
evaluated by developing a method based on the ansatz of standard experimental
benchmarking. The coefficients of each formula were re-derived using the
reliable data of the alpha-standards nuclei. The modified formulae that
resulted were used to evaluate the accuracies of the formulae towards the
prediction of half-lives of a set of nuclides with well-studied alpha-
spectroscopic data as well as a set of exotic alpha-emitters. Further, a simple
linear optimization of the modified formulae allowed adjustments for the
insufficient statistics of the primary data set without changing the modified
formulae. While the three modified formulae showed equivalent results for all
the medium heavy nuclei except the odd-odd, the modified GLDM showed relatively
the best figures of merit for the odd-odd and superheavy nuclides.Comment: 16 pages, 4 tables, 2 figure
Development of new shell structure in pf-shell nuclei
β-delayed γ-ray measurements have been part of an experimental program at the NSCL to understand the role of the πf7/2 - νf5/2 proton-neutron monopole interaction in neutron-rich pf-shell nuclei above 48Ca. Central to this study has been an attempt to observe the development of new shell structure at N 32, 34 through the systematic observation of E(2+1 ) as a function of neutron number. Additionally, the ground state spin and parity of odd-odd and odd-A nuclei were interpreted in an extreme single-particle model to follow the monopole migration of the νf5/2 as protons are removed from the πf7/2state
Beta-delayed γ-ray studies of φf7/2 - νpf shell nuclei
We have utilized the selective process of β decay to populate low-energy excited states in the neutron-rich 22Ti, 23V, 24Cr, and 25Mn nuclei. The goal was to systematically track the monopole shift of the νf5/2 single-particle level with increased occupancy of the φf7/2 orbital.The β-decay properties of the parent nuclides, along with the low-energy structure of the daughters, are presented and compared with the results of shell model calculations employing the GXPF1 interaction
Search for intruder states in 68Ni and 67Co
The level schemes of 68Ni and 67Co were extended following 70Zninduced deep-inelastic reactions. No evidence for a previously reported proton intruder 0+ state at 2202 keV in 68Ni was found. In 67Co, two new states at 3216 and 3415 keV have been established; additional states associated with the intruder configuration have yet to be identified
Low-spin states and the non-observation of a proposed 2202-keV, 0 + isomer in 68Ni
The low-spin level scheme of 68Ni was investigated with the Gammasphere array following reactions between a 70Zn beam and 238U, 208Pb, and 197Au targets. Spin assignments for some states have been verified through γ-ray angular correlations, including the 0+ assignment for the 2511-keV level. Two previously unknown states at 3302 and 3405 keV have been identified. No evidence was found for a recently reported 216-ns, 0+ isomer at 2202 keV that was attributed to a proton two-particle, two-hole intruder configuration, despite experimental conditions similar to those used in the measurement reporting its discovery
- …