49 research outputs found

    Statistical CSIT Aided User Scheduling for Broadcast MU-MISO System

    Get PDF
    Abstract: Recent studies show that the statistical channel state information (SCSI) helps to largely increase the capacity of communication systems when the instantaneous perfect CSI (IPCSI) is unavailable. In this paper, we consider multi-user multipleinput- single-output (MU-MISO) broadcast channels where the transmitter has the knowledge of SCSI. The major issue concerned in our work is to improve the average group-rate of the whole system by scheduling users over different time slots. With SCSI at the transmitter side, we are able to precode signals and hence compute the theoretical achievable group-rate of arbitrary user groups. Based on the group-rates, we propose tier-2 Munkres user scheduling algorithm (T2-MUSA) which leads to higher average group-rate than existing algorithms with generally better fairness. The optimality of the proposed algorithm in energy-fair user scheduling space is proved and we derive a lower bound of a special case to verify the validity of our simulations. In addition, many conventional user scheduling algorithms maintain queue stability by solving a weighted sum-rate (WSR) problem, using queue lengths to represent weight coefficients. Inspired by T2-MUSA we propose a QoS-based Munkres user scheduling algorithm (QB-MUSA) aimed at stabilizing queue lengths and maximizing throughput. In results, we show that QB-MUSA exhibits higher throughput than the conventional weighted sumrate (WSR) based algorithm

    Hypertensive intracerebral hemorrhage: Which one should we choose between laser navigation and 3D navigation mold?

    Get PDF
    BackgroundHypertensive intracerebral hemorrhage (HICH) is a severe life-threatening disease, and its incidence has gradually increased in recent years. Due to the particularity and diversity of its bleeding sites, the early treatment of hematoma needs to be more meticulous and accurate, and minimally invasive surgery is often one of the measures that are commonly adopted now. The lower hematoma debridement and the navigation template created by 3D printing technology were compared in the external drainage of a hypertensive cerebral hemorrhage. Then the effect and feasibility of the two operations were explicitly evaluated.Material and methodsWe performed a retrospective analysis of all eligible patients with HICH who underwent laser-guided hematoma evacuation or hematoma puncture under 3D-navigated molds at the Affiliated Hospital of Binzhou Medical University from January 2019 to January 2021. A total of 43 patients were treated. Twenty-three patients were treated with laser navigation-guided hematoma evacuation (group A); 20 patients were treated with 3D navigation minimally invasive surgery (group B). A comparative study was conducted between the two groups to evaluate the preoperative and postoperative conditions.ResultsThe preoperative preparation time of the laser navigation group was significantly shorter than that of the 3D printing group. The operation time of the 3D printing group was better than that of the laser navigation group (0.73 ± 0.26 h vs. 1.03 ± 0.27 h P = 0.00070). In the improvement in the short-term postoperatively, there was no statistically significant difference between the laser navigation group and the 3D printing group (Median hematoma evacuation rate P = 0.14); And in the three-month follow-up NIHESS score, there was no significant difference between the two (P = 0.82).ConclusionLaser-guided hematoma removal is more suitable for emergency operations, with real-time navigation and shortened preoperative preparation time; hematoma puncture under a 3D navigation mold is more personalized and shortens the intraoperative time course. There was no significant difference in therapeutic effect between the two groups

    Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves

    Get PDF
    Photoperiod plays a key role in controlling the phase transition from vegetative to reproductive growth in flowering plants. Leaves are the major organs perceiving day-length signals, but how specific leaf cell types respond to photoperiod remains unknown. We integrated photoperiod-responsive chromatin accessibility and transcriptome data in leaf epidermis and vascular companion cells of Arabidopsis thaliana by combining isolation of nuclei tagged in specific cell/tissue types with assay for transposase-accessible chromatin using sequencing and RNA-sequencing. Despite a large overlap, vasculature and epidermis cells responded differently. Long-day predominantly induced accessible chromatin regions (ACRs); in the vasculature, more ACRs were induced and these were located at more distal gene regions, compared with the epidermis. Vascular ACRs induced by long days were highly enriched in binding sites for flowering-related transcription factors. Among the highly ranked genes (based on chromatin and expression signatures in the vasculature), we identified TREHALOSE-PHOSPHATASE/SYNTHASE 9 (TPS9) as a flowering activator, as shown by the late flowering phenotypes of T-DNA insertion mutants and transgenic lines with phloem-specific knockdown of TPS9. Our cell-type-specific analysis sheds light on how the long-day photoperiod stimulus impacts chromatin accessibility in a tissue-specific manner to regulate plant development

    Intelligent methods for optimization design of lightweight fiber-reinforced composite structures: A review and the-state-of-the-art

    Get PDF
    As the application of lightweight fiber-reinforced composite structures reaches an unprecedented scale in industry, design technology for composite structures becomes crucial for enhancing performance, improving productivity, and reducing cost. In recent years, the rapid development of intelligent technology, such as big data, deep learning, and machine learning, has promoted the development of design technology. However, the current situation and intellectualization of the design technology is not well summarized. This paper reviews the advance in design technologies for fiber-reinforced composite structures, including prediction and optimization methods for composite properties. Then, their intellectualization development is overviewed. Finally, the development trend of intelligent design technologies and intelligent composite structures are discussed. This work can provide a reference for researchers in the related field

    Three-dimensional laser combined with C-arm computed tomography-assisted puncture of intracerebral hemorrhage

    Get PDF
    BackgroundIntracerebral hemorrhage (ICH) is the deadliest subtype of stroke, with a 30-day case fatality rate of approximately 40%. Timely and accurate treatment is essential to facilitate recovery. The introduction of stereotactic instruments and navigation systems has greatly improved the accuracy of surgical treatment. In this study, we explored the application and effects of a three-dimensional (3D) laser combined with C-arm computed tomography (CT) on ICH puncture.Materials and methodsAccording to the principle of randomness, 118 patients with ICH were divided into control and experimental groups. The control group was treated with CT-guided puncture, and the experimental group was treated with 3D laser combined with C-arm CT puncture. The hematoma clearance rates at 3, 5, and 7 days after surgery and the prognosis at 1, 3, and 6 months after surgery were compared between the two groups.ResultsThe hematoma clearance rates of the group using 3D laser combined with C-arm CT at 3, 5, and 7 days after surgery were significantly higher than those of the control group, and the difference was statistically significant (p < 0.05). One month postoperatively, the daily living ability (ADL) grading and recovery of the patients in the test group was significantly better than those of the control group (p < 0.05), but there was no statistically significant difference in ADL 3 and 6 months after surgery (p > 0.05).Conclusion3D laser combined with C-arm CT puncture has the advantages of real-time guidance, accurate positioning, and simple operation. It is an effective minimally invasive surgical method that is easy to master

    Comparative genomics reveals the hybrid origin of a macaque group

    Get PDF
    Although species can arise through hybridization, compelling evidence for hybrid speciation has been reported only rarely in animals. Here, we present phylogenomic analyses on genomes from 12 macaque species and show that the fascicularis group originated from an ancient hybridization between the sinica and silenus groups ~3.45 to 3.56 million years ago. The X chromosomes and low-recombination regions exhibited equal contributions from each parental lineage, suggesting that they were less affected by subsequent backcrossing and hence could have played an important role in maintaining hybrid integrity. We identified many reproduction-associated genes that could have contributed to the development of the mixed sexual phenotypes characteristic of the fascicularis group. The phylogeny within the silenus group was also resolved, and functional experimentation confirmed that all extant Western silenus species are susceptible to HIV-1 infection. Our study provides novel insights into macaque evolution and reveals a hybrid speciation event that has occurred only very rarely in primates

    Research on mathematical model and calculation simulation of wireless sensor solar cells in Internet of Things

    No full text
    Abstract Wireless sensor is an important part of the Internet of Things, which uses solar cells as power supply. Therefore, it is of great significance to study the characteristics of solar cells. In this paper, a new mathematical model of photovoltaic power generation is established, and the tuning methods of light intensity, temperature, photocurrent, reverse current, and open-circuit voltage are introduced in detail. The simulation experiment of software calculation shows that this method can accurately test the performance characteristics of the PV module. Under different conditions, the mathematical model can calculate the output voltage, the output current, the output power, and the power characteristic curve. The conclusions of this paper have practical application and guiding significance for solar cells as wireless sensor energy sources

    Theory and key technologies for wireless magnetic induction sensor network in challenging environment

    No full text
    In view of requirements of security and environmental monitoring in coal mine multiplex medium in challenging environment, in order to conquer the obstacles such as serious path loss, dynamic channel condition and constrained supply condition and so on, theory model of wireless magnetic induction communication and magnetic induction waveguide communication in multiplex medium was proposed, and structure of wireless magnetic induction sensor network was given. Research directions and application of wireless magnetic induction sensor networks in the future were prospected, the urgency of related study was pointed out. It has great significance to safety monitoring of underground environment and the oil, gas or water pipeline which is especially long or in densely populated area
    corecore