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As the application of lightweight fiber-reinforced composite structures reaches an
unprecedented scale in industry, design technology for composite structures
becomes crucial for enhancing performance, improving productivity, and
reducing cost. In recent years, the rapid development of intelligent technology,
such as big data, deep learning, and machine learning, has promoted the
development of design technology. However, the current situation and
intellectualization of the design technology is not well summarized. This paper
reviews the advance in design technologies for fiber-reinforced composite
structures, including prediction and optimization methods for composite
properties. Then, their intellectualization development is overviewed. Finally,
the development trend of intelligent design technologies and intelligent
composite structures are discussed. This work can provide a reference for
researchers in the related field.
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1 Introduction

Lightweight fiber-reinforced polymer (FRP) composite has been widely used in
aerospace industry due to its high strength-weight ratio, high temperature resistance,
outstanding designability to meet different requirements and the ability to integrate
large-scale integral structures (Zhao et al., 2016; Sun et al., 2020; Wang et al., 2021a;
Wang et al., 2021b). As shown in Figure 1A, the application of lightweight FRP composite in
aircraft has been increasing rapidly since the end of 20th century. The composite structure
weights of Boeing 787 (Figure 1B (DOCSLIB, 2022)) and Airbus A350, most advanced
commercial aircraft in the world, are over 50%. The application of FRP not only enhances
their safety and energy-efficient significantly, but also is environment-friend (Van Grootel
et al., 2020). Because of the benefits, the usage of FRP composite in aerospace industry will
increase continuously.

The mechanical properties of FRP composite in aircraft, such as engine and
wing, mainly depend on both the design and manufacturing technologies (Figure 2).
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Design of FRP composite include the material selection, the
determination of material content, the internal structure of
composites and so on, which pursuits to figure out the
relationship between their mechanical properties and these
parameters. Manufacturing process of composites is
complicated and primarily determines whether the final

performance of the composites can reach the designed value.
In this review, we emphasize on the development of design
technology.

Analytical methods are the early primary approaches to predict
macro properties of simple composites, for example, laminated
plates. However, due to the complex internal structure of

FIGURE 1
Composite application in aircraft (A) Percentage of total structural weight attributed to composites, (B) FRP composite in Boeing 787.

FIGURE 2
Development of design and manufacturing technologies of composite structures with intelligence.
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composites, analytical methods are unable to elucidate micro- or
meso-scale mechanical mechanism. In micro scale, a fiber tow
consists of hundreds of unidirectional fibers in random
arrangement, which are adhesive with polymer resin. A small
defect in fibers, resin or the interface between fibers and resin
may cause failure of composites under external forces. To
illustrate the interdependence between macro properties and
micro internal structure, some multi-scale methods from the
view of micro- or meso-structure of composites are proposed
such as method of cells (Aboudi, 1981; Aboudi, 1982; Aboudi,
1988; Aboudi, 1989; Aboudi, 1991).

Furthermore, multi-scale methods generally combined with
finite element (FE) method have established to construct the
relationship between the design parameters and mechanical
properties of composites. However, it is still difficult to achieve
high-throughput prediction because of the excessive time
consumption in simulation process by FE method. To improve
the prediction efficiency, artificial intelligent methods, e.g., neural
network andmachine learning, have been developed (Xu et al., 2015;
Wagner et al., 2019; Wanigasekara et al., 2020; Wanigasekara et al.,
2021; Parmar et al., 2022; Thomas et al., 2022). As well-know, one of
the purposes of composite design is to improve the mechanical
properties by optimizing design parameters. For this purpose,
parameter analysis through experiment and FE method is a main
conventional approach, but this approach is time-cost and global
optimal solutions are not obtained all the time. The pursuit of rapid
prediction and optimization of composites has driven the research
into the combination of intelligent algorithm and artificial
intelligence with the conventional experiment methods and FE
method.

With the rapid development of intelligent technology, the digital
and intelligent design has been the inevitable development trend.
Researchers have made much progress in the application of
intelligent technologies on many industrial fields. For instance,
artificial neural network (ANN) has been used to predict the
enhanced oil recovery using fluid injection (Abbassi et al., 2023),
to identify parameters of a mechanical ductile damage in sheet metal
forming (Abbassi et al., 2013), to monitor and assess environmental
quality (Franceschi et al., 2018), etc. However, an overall review
upon the intellectualization advance of design technology for FRP
composites is still absent. This review dedicates design
technologies for continuous fiber-reinforced polymer
composites. In the first section, prediction methods for
composite performance are presented, including multi-scale
methods and intelligent prediction methods. Then the
development of intelligence in the optimization of composite
properties is introduced in detail. The research focusing on the
difficult issues of the processes are introduced and discussed.
Finally, the intellectualization development trend of composite
design technologies is predicted.

2 Prediction of mechanical properties

Composite structures have the advantage of strong
designability, and the designable parameters include the fiber
and matrix type, the volume percent of fibers, the direction of
the laminate, etc. If designers lack a clear understanding of the

influence of design parameters on the composite properties, it
will lead to a useless design and cause a waste of resources and
time (Gooneie et al., 2017). The aim of predicting properties of
composite structures is quantitatively figuring out the
relationship between design parameters and mechanical
properties, which can guide the design direction and is
helpful for designing high-performance composite structures
efficiently. The multi-scale and intelligent methods are two main
approaches.

2.1 Multi-scale prediction method

The prior prediction method for the mechanical properties of
composites is macro-scale method, which is mainly to describe the
overall mechanical behavior of a composite. Hence, this method is
mostly based on phenomenological theory and experimental data,
and classical finite element. It is well-know that various meso- or
micro-damage in composite material, such as yarn or fiber breakage
and matrix crack, could lead to macroscopic structural fracture.
However, the macro-scale method is unable to accurately describe
the complex damage process and failure mechanism of composites
due to the neglect of the details inside them. In recent decades, meso-
and micro-scale methods have been developed to solve many
problems separately.

Nevertheless, for a FRP composite structure, its overall
mechanical properties (structure level) are intimately linked with
the meso-structure of yarns (yarn level). The yarn behavior depends
on the arrangement of fibers and the interaction between fibers
(fiber level), and the relative motion of fibers within a yarn is the
main reason for the change of yarn cross-section shape (Miao et al.,
2008). Recently, some researchers also use the molecular dynamics
(MD) method to further study the interface properties between
fibers and resin at nano-scale (Sun et al., 2018; Sun et al., 2021). This
fact indicates that a single-scale method is insufficient for predicting
mechanical properties of composites, especial the failure process
from initial defects to structure damage. Besides, with the wide
application of fiber-reinforced composites in aerospace, the size of
target components is increasing, and the requirement of analysis
accuracy is also improving. Therefore, the research on the
approaches for predicting mechanical properties of composites
has gradually developed from the traditional single-scale method
to multi-scale method.

In multi-scale method, two different analysis strategies are
proposed: sequential and concurrent multi-scale approach. The
sequential approach divides the analysis objectives into multiple
levels (for instance, from molecular to structure level) and
selects appropriate parameters to realize the information
transmission between different levels (Figure 3). Micro-scale,
meso-scale and macro-scale models are adopted in sequence to
study a composite structure. Different from the sequential
approach where analysis is conducted in one scale model a
time, multiple different scale models are analyzed
simultaneously in a concurrent multi-scale model. The
concurrent approach connects different regions through some
sort of a handshaking procedure and multi-scale parallel
computing (Broughton et al., 1999; Rudd and Broughton,
2000; Nakano et al., 2001).
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2.1.1 Sequential approach
The sequential multi-scale approach mainly includes analytical

and FE simulation method. The analytical method is mainly derived
from the inclusion theory, including self-consistent method
(Budiansky, 1965; Hill, 1965), Mori-Tanaka method (Benveniste,
1987), differential method (Roscoe, 1952), etc. This method can
quickly predict the linear elastic properties of composites with
simple microstructure, but it cannot solve the non-linear
behavior and local field details of composites. The combination
between analytical method and FE simulation method is a useful
approach.

• Method of cells

Method of Cells (MOC) is a typical multi-scale method
proposed by Aboudi (Aboudi, 1981; Aboudi, 1982; Aboudi, 1988;
Aboudi, 1989; Aboudi, 1991), which can provide the macro-
behavior, such as yield surfaces, strength envelops and fatigue
failure, of periodic multiphase materials of various types, also
FRP composites by further divided RVE into four simpler
subcells. At the cost of losing a little calculation accuracy of the
local stress and strain field, this method can gain the fast solution of
equilibrium equations and equivalent parameters.

From method of cells, the generalized method of cells (GMC) is
obtained, which defines a repeating unit cell (RUC) in a periodic
structure and divides it into an arbitrary number of orthogonal
subcells rather than four or eight subcells in MOC (Paley and
Aboudi, 1992; Aboudi, 1996). GMC, therefore, can achieve
higher accurate overall behaviors of composites and model
composites with various types of phase arrangements and shapes
effectively. GMC has been widely used to study fiber reinforced
composites and braided composites used in aviation engineering.
For instance, Li et al. (Li and Zhang, 2015) developed a viscoelastic
constitutive model of fiber reinforced composites based on GMC, in
which thematrix is viscoelastic and the fiber is transversely isotropic.

Despite of this, the method’s accuracy of estimating local stress
and strain fields is not as good as its macro-predictive capability both
in the elastic and inelastic regions (Aboudi, 2004). Afterwards,

Aboudi et al. (Aboudi et al., 2003) eliminated the drawback
through a higher-order theory that has been developed to analyze
functionally graded materials and the elements of the
homogenization technique. This new model is referred to as
high-fidelity generalized method of cells (HFGMC) and exhibits
the ability to accurately simulate of microlevel stress and strain fields
and macrolevel constitutive response of multiphase materials
subjected to multiaxial loading.

The HFGMC method has already been applied on inelastic,
smart composites, finite strain analysis, sandwich structures, etc.
By employing the HFGMC model, Bednarcyk et al. have figured
out the effects of fiber misalignment (Bednarcyk et al., 2014) and
clustering (Bednarcyk et al., 2015), and the damping properties of
unidirectional, laminated, and woven composites (Bednarcyk et al.,
2016). The HFGMC was also successfully used for the mechanical
property prediction of reinforced carbon nanotubes by David et al.
(David et al., 2014). Surprisingly, the HFGMC has also been
implemented to predict the behavior of smart composites, such
as piezoresistive composites and magnetostrictive materials. Thus,
piezoresistive composites, of which the electrical resistance
changes with the application of mechanical deformation, have
been analyzed by Haj-Ali et al. (Haj-Ali et al., 2014) by
employing the HFGMC micromechanics model. Further, the
HFGMC analysis has been formulated for the analysis of
magnetostrictive composites, of which elastic strain can be
generated by the application of magnetic field (Aboudi et al.,
2014). In the HFGMC model, one of the phases behaves as a
magnetostrictive material whose constitutive response is non-
linear. Additionally, it has been found that HFGMC can be
applied in sandwich structures. Kheyabani et al. (Kheyabani
et al., 2022) presented a robust and computationally efficient
multiscale analysis approach for linear elastic structural analysis
of thick sandwich structures by coupling of the parametric
HFGMC and the refined zigzag theory (RZT) based
isogeometric analysis (IGA) plate formulation. The present
method was computational efficiency, high accuracy, and low
cost for sandwich structures. These methods are summarized
and compared in Table 1.

FIGURE 3
Sequential approach with the multi-scale modeling from nanoscale (molecule) to macro-Scale (structure).
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Recently, Aboudi et al. (Aboudi and Gilat, 2021; Aboudi and
Gilat, 2022a; Aboudi and Gilat, 2022b) applied the HFGMCmethod
to predict the microbuckling of various types of viscoelastic
composites containing several randomly located fiber waviness of
spatially varying amplitudes under compression. They verified the
applications of HFGMC for the prediction of the microbuckling
stresses of bi-layered, continuously reinforced, and aligned short-
fiber viscoplastic composites. For now, the HFGMC
micromechanical method has the potential to address more
mechanical problems regarding to various types of composites.

• computational homogenization

The homogenization method (Sánchez-Palencia, 1980; Oleïnik
et al., 2009) is essentially a mathematical method, aiming to study
the relevant physical parameters of composites at different scales,
expand each physical parameter with the ratio of the two scales as a
small parameter (Figure 4), and establish the relationship between
the expansion parameters according to the geometric equations,
physical equations and equilibrium equations. Then the periodicity
and boundary value conditions of the RVE are used to solve the
expansion quantities and macroscopic physical fields. The
computational homogenization method can solve the
corresponding equivalent mechanical properties, thermal
properties, damage criteria and so on.

Based on the computational homogenization method, many
researchers have carried out a lot of work on the elastic mechanical
response, elastic property analysis and prediction of composite
materials. They realize the leap from unidirectional composite
materials to three-dimensional braided composite materials, and
from simple boundary conditions to complex boundary conditions.
For example, Balasubramani et al. (Balasubramani et al., 2022)
proposed a RVE modeling method for unidirectional composites,
which is closer to the real fiber layout, and successfully predicted the
equivalent mechanical properties of composites through
homogenization method. Zhou et al. (Zhou et al., 2016)
considered the uncertainties associated with the material
properties, and obtained the corresponding elastic properties of
composites by using the computational homogenization method.

In addition to the elastic properties, homogenization method
can also be used to study the damage of composites, such as the
interface problem and impact problem of composite materials. Ullah
et al. (Ullah et al., 2017) established a three-dimensional multi-scale
computational homogenization framework to investigate the fiber-
matrix debonding of composites, and modeled them using
uncorrelated pressure-dependent paraboloid yield criterion and
cohesive interface element respectively. Additionally, Sun et al.
(Sun et al., 2018; Sun et al., 2021) combined the homogenization
method with MD analysis to determine the elastic-plastic-damage
constitutive law of the composite, and then obtained the properties
of the interface between fiber and resin. They realized the high-
precision simulation of the multi-scale failure strength and damage
behavior of the composite. Furthermore, by adopting the
homogenization multi-scale method, Canal et al. (Canal et al.,
2017) successfully predicted the specimen thickness scaling effect
in fiber bridging fracture under the consideration of the physical
processes of interlaminar damage initiation, propagation and fiber
bridging of composites. As the impact problem, Zhao et al. (Zhao
et al., 2018) simulated the multi-scale failure behavior of triaxial
braided composites during impact depending on homogenization
method, and Yuta et al. (Yamazaki et al., 2018) used the
homogenization method to predict the dynamic matrix dominant
failure behavior of carbon fiber reinforced polymer (CFRP)
composite structures under impact loading, where the strain rate
effect of resin matrix was considered.

To illustrate the actual service state of composite structures
more accurately, its viscoelastic behavior is also considered in a
multi-scale model. An example is that the influence of matrix
viscoelasticity and yarn geometry on the mechanical properties
of composite structures were considered in the multi-scale
modeling with homogenization method (Hofer et al., 2020).
This research obtained the equivalent mechanical properties of
composites and verified the proposed multi-scale model
through the compression creep test of braided reinforced
pipe. The viscoelastic behavior of three-dimensional braided
composites was also concerned by Zhai et al. (Zhai et al., 2020).
They used the asymptotic expansion homogenization (AEH)
method and multi-phase finite element (MFE) to simulate the
viscoelastic behavior from the micro-scale (fiber/resin), meso-
scale (yarn/resin) and macro-scale (homogeneous composite).
For the purpose of further improving the calculation efficiency
of the dynamic response of composite structures, Hachemi et al.
(El Hachemi et al., 2016) homogenized the composite through
multi-scale finite element analysis, and obtained the viscoelastic
properties of the composite structure, such as its storage
modulus, loss modulus and mechanical impedance, as well as
the overall dynamic response.

Furthermore, homogenization method has been used to
research the irreversible curing deformation of thermosetting
composite structures. The influence of the curing deformation on
the geometry andmechanical properties of components in the actual
manufacturing process should also be fully considered to prevent the
design components from failing to meet the requirement on
mechanical properties and geometric dimensions. Due to this
fact, Peter et al. (Lenz and Mahnken, 2021) established a micro-
meso-macro scale framework for thermal, mechanical and chemical
homogenization of composites, and successfully took heat

FIGURE 4
Homogenization of composites in microscale and mesoscale.
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conduction, elastic properties, chemical reaction kinetics and curing
kinetics into account in the homogenization process. Throughmicro
and macro homogenization, Anton et al. (Trofimov et al., 2021a;
Trofimov et al., 2021b) developed a multi-scale thermos-chemo-
mechanical simulation method of composites, obtained the
coefficients related to thermal expansion and chemical shrinkage
of composites, and successfully predicted the distortion of 3D woven
composites after RTM process.

• Multi-scale analysis considering the randomness of practical
structures

In the above-mentioned methods, composite structures are
generally regarded as the periodic arrangement of RVE, but the
randomness of practical structures is not considered, like the
random arrangement of fibers or yarns in Figure 4. Therefore,
there is still a certain error between the simulation results and
the practical response of composite structures. Andy et al.
(Vanaerschot et al., 2016) considered the spatial randomness
of fibers in textile composites for modeling and proposed a
multi-scale modeling method approaching real textile
composites.

For braided composites with more complex internal structure,
the mechanical properties are greatly affected by the internal local
properties of materials. Therefore, it is difficult to meet the
requirements of accurate analysis by using the idealized periodic
arrangement model rather than the accurate model of the internal
fiber braiding structure. Bassam et al. (El Said et al., 2016) considered
the changes of internal yarn geometry of 3D braided composites in
different part configurations, proposed a multi-scale modeling
method based on Voronoi subdivision in 3D space, and created
an intermediate length scale suitable for homogenization to deal
with the aperiodicity of the final material. This method considers the
influence of material aperiodicity on properties and damage, and the
results is in good agreement with the corresponding
experimental data.

Woven composites with complex architecture and a certain
feature of mutually orthogonal reinforcement arise particular
interest for aerospace structural groups. Multiscale analysis is
suitable for modelling woven composites. Focusing the multiscale
modeling problem of woven composite, Gherissi et al. (Gherissi
et al., 2013) created an anisotropic multiscale model method under
Abaqus and Matlab software after resolving several difficulties,
including modelling the mechanical behavior of yarns,
discretizing geometric model of yarns, and so on. They claimed
that this study contributes to solving the complex problem of woven
composites at the mesoscale and the implementation of multi-scale
procedure. Based on realistic geometry parameters and material
property of an 8-harness satin woven composite, Yang et al. (Yang
and Yan, 2020) established multiscale finite element models. The
effective properties of fiber bundles can be obtained by the micro-
scale model and then used in the meso-scale model, which is used to
predict the global failure behavior of the woven composite. Recently,
Liu et al. (Liu et al., 2023) developed a multiscale modeling approach
to predict the force–displacement curve, elastic modulus and tensile
strength of 3D braided CFRP composites. The results reveal that the
fiber breakage, matrix cracking and debonding are the dominant
failure modes.

2.1.2 Concurrent approach
In sequential approaches, the models in different scales are

separated and the information are transferred between the
models. Specifically, for example, elements in a single FE model
are constructed in a single scale. However, critical regions, such as
stress concentration, crack initiation and propagation, and other
critical physical phenomena may occur in composites, which the
sequential approach is unable to model accurately. Consequently,
concurrent multiscale method was established, which divide the
entire solution domain into non-critical far field and several critical
sub-regions. The macroscopic analysis using bottom-up
homogenization in the non-critical far field enhances the
efficiency of the computational analysis. On the other hand,
microscopic analysis using the top-down localization process in
critical sub-regions is necessary for achieving sufficient accuracy. In
a word, concurrent multiscale method implements sub-structuring
and concurrently solves different models at regions with different
resolutions or scales.

Qiao et al. (Qiao et al., 2023) developed a macro-mesoscale
coupled model for evaluating the progressive damage behavior of
notched 3D woven composites subjected to the tensile loading
(Figure 5A). Instead of applying macroscopic phenomenological
failure criterion, mesoscale continuum damage model was used in
this model. Consequently, this model is capable of predicting
stress–strain responses and simulating the propagation process of
macro-meso coupled damage nearby the hole-edge. He et al. (He
et al., 2021) pointed out two challenges in conducting a concurrent
multiscale simulation for composites: How to solve the RVE fast and
accurately and capture the non-linear behavior of 3D braided
composites. To solve the challenges, they proposed a concurrent
multiscale framework from microscale to mesoscale (Figure 5B)
based on the data-driven self-consistent clustering analysis, an
effective reduced order model. They further proposed a
concurrent three-scale scheme FE-SCA2 (SCA is short for self-
consistent clustering analysis) for predicting the macroscopic
non-linear behavior of braided composites associated with the
microscopic plastic and damage of the constituents (He et al.,
2022). The proposed approach can simultaneously capture the
microscale, mesoscale, and macroscale non-linear behavior of
braided composites, which would be difficult for experimental
methods. Based on the approach, Gao et al. (Gao et al., 2022)
adopted a data-driven concurrent n-scale modeling approach
(FExSCAn−1) for woven composites. This framework provides an
accurate prediction for the structural performance (e.g., non-linear
structural behavior under tensile load), as well as the physics field
evolution of woven and unidirectional composites (Figure 5C).
Besides the abovementioned concurrent models, the molecular
dynamics-coupled concurrent model has been developed.
Nevertheless, the model is usually applied on nanocomposites
rather than FRP composites (Li et al., 2018).

Additionally, concurrent multiscale model can be combined
with machine learning. Based on mechanistic homogenization
theory of RVE and advanced machine learning techniques, a
data-driven multiscale material modeling method is developed by
Liu et al. (Liu et al., 2019). They believed that this intelligent material
model can efficiently simulate a large-scale heterogeneous structure
by a high-fidelity concurrent model (Liu et al., 2019). Afterwards,
they proposed the transfer learning strategy of this model for
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structure–property predictions. The efficiency enables the
generation of a large output space for a multi-objective materials
design problem.

2.2 Intelligent prediction method

The microscopic structure and macroscopic design parameters
of composites can directly determine their mechanical properties.
Therefore, many researchers use artificial intelligent method to
bridge the microstructure and macro design parameters-
mechanical properties, and drive the rapid development of multi-

scale mechanics of FRP composites. Specifically, this method
depends on data to mine the internal relationship between design
parameters and basic mechanical properties, fatigue properties,
impact properties, or even establish constitutive laws of
composites. Artificial neural network (ANN) is the most
representative and common intelligent method for predicting
mechanical properties of FRP composites. A well-trained ANN
model (Figure 6A) can realize the non-linear mapping between
the design parameters and mechanical properties of composites
(Figure 6B), and shows good accuracy and efficiency in the
prediction of composite properties. Owing to these features,
ANN has attracted more and more attention. Besides,

FIGURE 5
Concurrent multiscale models of composites (A) Macro-mesoscale (Qiao et al., 2023), (B) Meso-microscale (He et al., 2021), (C) Macro-meso-
microscale (Gao et al., 2022).
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convolutional neural network (CNN) and deep neural network
(DNN) have also been used for the prediction of some properties
of FRP composites.

2.2.1 Fundamental properties
Xu et al. (Xu et al., 2015) extracted the key geometric parameters

of fiber scale and tow scale according to the microstructure of 3D
braided composites, and then used ANN to construct the non-linear
mapping relationship between microstructure parameters and
tensile modulus. Bezerra et al. (Bezerra et al., 2007) used ANN to
predict the shear mechanical properties of carbon fiber reinforced
epoxy composites and glass fiber reinforced epoxy composites under
different stacking sequences. By inputting the number of layers, the
types of fiber andmatrix into a trained ANN, Khan et al. (Khan et al.,
2019) completed the prediction of the flexural modulus, hardness,
impact and transverse rupture strength of four types of carbon/glass
fiber reinforced composite materials. The average absolute error was
less than 5%, proving that the ANN can still maintain good
prediction stability under complex variables. The calculation
speed of ANN can reach hundreds of times larger than that of
the finite element method, which greatly improves the efficiency of
evaluating the structural bearing capacity in the design of composite
stiffened plates (Mallela and Upadhyay, 2016). Fan et al. (Fan et al.,
2023) proposed an efficient prediction method to elucidate the
process induced deformation (PID) contours of composites with
different stacking sequences by combining the FE method and a
convolutional neural network (CNN). Firstly, FE simulation was
experimentally verified using rectangular laminates with 12 types of
stacking sequences. Then, this deep learning method was employed
to study the PID contours and gives a high accurate and fast
assessment of a tail rudder structure after training.

ANN has been widely used to predict properties of sandwich
structures because ANN models can capture the non-linear effects
and requires lesser computational demand compared to the FE
analysis. Fadlallah et al. (Fadlallah et al., 2021) offered a

simulation–optimization model for behaviour prediction and
structural optimization of lightweight honeycomb sandwich
composite heliostats utilizing ANN technique and particle swarm
optimization (PSO) algorithm. By utilizing the proposed integrated
ANN-PSO approach, the structural performance of honeycomb
sandwich composite-based heliostats was predicted and
optimized to meet desired different requirements. Besides, the
prediction of vibration response of sandwich structures by ANN
is studied by Kallannavar et al. (Kallannavar et al., 2021) and Pham
et al. (Pham et al., 2022). The ANN model can predict the natural
frequency of sandwich structures and the effects of geometrical and
material properties on vibration response. Garg et al. (Garg et al.,
2017) focused on the application of ANN in predicting sound
insulation performance of multi-layered sandwich gypsum
partition panels and developed a multilayer feed-forward
approach comprising of 13 input parameters, which shows an
accurate prediction.

2.2.2 Constitutive relationship
With the increasingly complex composition and structure of

composites, their non-linear mechanical behavior and failure
mechanisms become more complex. However, the existing
mechanical models are unable to reflect the conjoint action of
these mechanisms simultaneously. In artificial intelligence
method, the design parameters and measured stress-strain curves
of composite materials can be directly used as data to construct the
relationship between stress and strain under different material
parameters. The complex internal mechanism of composite
materials is unnecessary, contributing to avoiding the error
caused by empirical modeling. Pidapart and Palakal (Pidaparti
and Palakal, 1993) trained the ANN with fiber angles of
orientation, initial stress and stress increment as input and total
strain as output, and successfully constructed the stress-strain curve
of unidirectional laminates under different layer angles. Ghaboussi
et al. (Ghaboussi et al., 1998) proposed an ANN training method of

FIGURE 6
Prediction of properties of composites by ANN. (A) ANN model, (B) Predicting the properties of composite materials using ANN directly, (C)
Predicting the properties of composite materials by combining ANN and finite element method.
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automatic progressive training, which predicted the stress response
of composites under different strains and further improved the
accuracy of prediction. Additionally, Zobeiry et al. (Zobeiry et al.,
2020) constructed the progressive damage model of quasi-isotropic
composite laminates based on the multi-level connected ANN, and
obtained the Load-POD (Pin Opening Displacement) curves highly
coincident with the experimental results. As shown in Figure 6C,
Guo and his co-works (Yang et al., 2019; Yang et al., 2020) use neural
networks to replace the unknown function in finite element analysis
and give the corresponding stress-strain relationship, which has
broad application potential in the future multi-scale constitutive
modeling of aerospace composites.

To ensure the reasonability of the prediction, Yu and his co-
works (Tao et al., 2021) established Abaqus-DNN mechanics
system, which consisting of deep neural network (DNN) model
and FE code Abaqus, to learn constitutive laws based on structural
level data of FRP composites. Consequently, the learned result
automatically satisfies the equilibrium and kinematics equations,
which avoids inaccuracies associated with the presumed functions in
the constitutive laws and guaranteed the learned constitutive law
following the laws of physics. Afterwards, they developed the system
to discover the constitutive law of composites lamina. The blind
prediction performance of the developed system was finally verified
by a blind prediction test.

2.2.3 Impact property
In addition, artificial intelligence methods are also gradually

developed to solve impact problems in aeronautical advanced
composites. Addona et al. (D’addona et al., 2012) used ANN to
predict the residual tensile strength of glass fiber reinforced
composite laminates after bearing different degrees of low-speed
impact damage according to the experimental data. Laban et al.
(Laban et al., 2020) applied ANN to predict the quasi-static
compression capacity of composite cubes under low-speed
impact load through initial peak force, mean load and crush
force efficiency, and successfully modeled the highly non-linear
behavior of impact with mean square deviation of only 0.19 N.

Fernández et al. (Fernández-Fdz et al., 2008) combined
experiment, finite element method and ANN to predict whether
the composite will be penetrated under different impact angles and
velocities, and the damaged area in the case of non-penetration and
the residual angle and residual velocity in the case of penetration.
The results show that the error between the ANN prediction results
and the actual data is within 7%. Based on the paradigm of
“experiment-FE analysis-ANN”, Artero-Guerrero et al. (Artero-
Guerrero et al., 2018) predicted the ballistic limit of composites
under different stacking sequences. The error of ANN in training set
and test set is 3.7% and 7%, respectively. Based on the well-trained
ANN, they found that the placement of 0° and 90° layers on the
impacted side of the composite is helpful to improve the ballistic
limit of the composite laminate and realize the guidance of
composite design.

Ballistic performance of honeycomb-core sandwich panels
subject to hypervelocity impact was studied by Carriere et al.
(Carriere and Cherniaev, 2022). ANN and a dedicated ballistic
limit equation were trained to predict the ballistic limit by using
a database composed of results from experiments and simulations.
This approach can accurately estimate the influence of the cell size

and foil thickness of the honeycomb core, as well as the material of
the core, on the ballistic performance of sandwich panels.

3 Intelligent optimization design of
composite structures

After accurately predicting the properties of composite
materials, design parameters of composite materials can be
optimized to reduce the weight and cost of composite structural
parts, while maintaining the bearing capacity of composite
structures. The optimization of composite design is mainly
divided into two aspects: the topology optimization in geometry
and the stacking sequence parameter optimization of composite
laminates. Due to the large amount of calculation and many
coupling factors, the topology optimization of composite
materials is less applied in the aviation industry at present.
Therefore, this section mainly summarizes the stacking sequence
optimization of composite structures.

3.1 Expert system

In the 1990 s, researchers introduced the expert system into
the field of composite materials and carried out a series of
studies on the material selection and design of composites
(Choi and Lee, 1995; Lee and Liebowitz, 1995; Jeon and Song,
2002). But the expert system can only consider a limited range.
Poor learning ability and dependence on prior knowledge of
domain experts limit the further development of expert system.
At the same time, the research on intelligent computing
methods, such as genetic algorithm, simulated annealing and
particle swarm optimization, is becoming more and more
mature, and has become an effective method to solve
complex problems. Based on certain design rules, researchers
solved the stacking sequence optimization problem of
composite laminates under simple load by using intelligent
calculation method, which proves that this method is more
accurate and efficient than manual design (Ball et al., 1993;
Sargent et al., 1995). Kim J-s et al. (Kim et al., 2005; Kim, 2007)
combined expert system with genetic algorithm to develop a
stacking sequence optimization system for composite laminates
under complex constraints, which improved the efficiency of
expert system learning and design. With the continuous
development of finite element method, the ability to solve
complex problems is gradually enhanced.

3.2 Finite element method and intelligent
algorithm

The combination of finite element method and intelligent
algorithm makes it possible to optimize composite materials with
complex geometric configurations and loading conditions. For
example, Herencia et al. (Herencia et al., 2007) optimized the
stacking sequence of T-stiffened plate with strength and buckling
load as constraints. Lopes et al. (Lopes et al., 2009a; Lopes et al.,
2009b) optimized a laminated plate under impact load with
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dispersed stacking sequence. The common intelligent algorithms
include genetic algorithm, evolutionary algorithm, etc.

Genetic optimization algorithm combining with FE model is
potential approach in the optimization of composite structure,
especially for mass reduction, one of the important objectives of
optimisation. Wang et al. (Wang et al., 2016) applied this method to
optimize a wind turbine composite blade with 17.4% weight
reduction under the consideration of stress constraint,
deformation constraint, buckling constraint, stacking sequence
constraint and manufacturability. The application of the method
on an metal offshore wind turbine support structure also give 19.8%
reduction in the global mass (Gentils et al., 2017). Furthermore, by
combining evolutionary and topology optimization schemes and
integrating the inverse FE method, Albanesi et al. (Albanesi et al.,
2020) presented a novel methodology to reach up to 23% mass
saving of a 28.5 m composite blade. Kim et al. (Kim et al., 1999)
developed a patchwise optimal layup design method by integration
of an expert system shell, genetic algorithm (GA) and finite element
method to minimize the weight of a tapered composite laminates
under strength constraint. The results show that the optimized layup
can considerably reduce total weight of the composite laminates
compared with the uniform thickness laminates.

Enhancing mechanical properties is another vital purpose of
composite optimisation. Lee et al. (Lee et al., 2013) aimed to increase
the design load of composite sandwich cylinders under external
hydrostatic pressure by using FE analysis and micro-genetic
algorithm. Based on the optimization, as the thickness of the
sandwich increases, the buckling load becomes larger than the
material failure. Consequently, the optimum point is determined
by material failure. Generally, the optimisation of mechanical
properties is multi-objective. Evolutionary algorithm has been
confirmed owning the ability of dealing with two or more
contradictory objective. Ratle et al. (Ratle et al., 2004) applied a
multi-objective evolutionary algorithm to optimize the design of a

composite helical spring, aiming to maximize the spring stiffness
and minimize the mass. Seeger et al. (Seeger and Wolf, 2011)
presented a design methodology integrated evolutionary
algorithms with FE model to optimize complex composite
aircraft structures such as composite test panels and CFRP
composite fuselage tail sections for the minimum-weight design
with the smallest possible cut-out deformation (Figure 7).

3.3 Analytic solution and intelligent
algorithm

The combination of finite element method and intelligent
calculation method realizes the independent exploration of
composite design space by computer. However, compared with
the rapid response of intelligent computing methods, finite
element method usually takes a lot of calculation time, which
limits the further improvement of the speed of computer
independent design. For some classical mechanical problems,
theoretical calculation rather than finite element method can be
used to save calculation time. For example, the combination of
classical laminated plate theory and intelligent calculation method
can realize rapid multi-objective optimization for composite
strengths and reduce their weight and manufacturing cost
(Omkar et al., 2011; António, 2014). Pelaez et al. (Pelaez et al.,
2017) used the cultural gene algorithm to select fiber and matrix
types, and optimize the stacking sequence based on the analytical
solution of the strength problem of composite laminates under
biaxial tensile load. Kamarian et al. (Kamarian et al., 2018) used
the Mori-Tanaka method and the generalized differential
quadrature method to calculate the natural frequencies of eight
symmetric ply rectangular laminate, and further combined them
with the firefly algorithm to optimize the stacking sequence. The
optimization results show that although the firefly algorithm will

FIGURE 7
(A) Flowchart of the simulation model including the design concept database, (B) the optimization of CFRP composite fuselage tail sections (Seeger
and Wolf, 2011).
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lose a small amount of calculation accuracy, the design efficiency can
be improved hundreds of times. Wagner et al. (Wagner et al., 2019)
trained the decision tree model to get general design suggestions
based on the data obtained from the analysis of single boundary
perturbation method under ideal/non-ideal buckling loading, and
optimized the stacking sequence of laminate. Compared with the
laminates obtained by the traditional optimization method, the
laminates designed by this method have higher buckling load and
lower defect sensitivity.

3.4 Artificial intelligence and intelligent
algorithm

The above studies are carried out for composite structures
under simple loading or simple geometry, so the theoretical
calculation has achieved good results. However, these methods
is unable to obtain theoretical solutions of complex composite
structures, especially under complex load. Inspired by the
application of neural network in the prediction of composite

properties, some researchers base on some successfully trained
neural network, and gradually form an optimization design
method combining neural network and intelligent computing as
shown in Figure 8, which greatly improves the calculation
efficiency of optimization problems. Jayatheertha et al.
(Jayatheertha et al., 1996) trained an ANN instead of finite
element method and combined it with a simulated annealing
algorithm to optimize the stacking sequence of composite
laminates under stiffness and strength constraints. Zhang et al.
(Zhang et al., 2008) predicted the strength characteristics of
composites from the maximum stress of composites through
ANN, further optimized the wrapped fiber density and filled
fiber density of 2.5D braided composites using genetic
algorithm, and successfully realized the weight reduction design
of composites. Szklarek et al. (Szklarek and Gajewski, 2020) used
the combination of ANN and genetic algorithm to optimize the
lamination stacking sequence of composite U-shaped plates and
improve the critical buckling loading. Bisagni et al. (Bisagni and
Lanzi, 2002) trained the ANN to replace the non-linear finite
element analysis for the post buckling optimization of composite

FIGURE 8
Combination of ANN and intelligent algorithm for optimal design.

TABLE 1 Comparison of MOC, GMC and HFGMC.

Method Subcell Object Capability Disadvantage References

MOC RVE divided
into four or eight
subcells

• Fibrous composite of a
periodic structure

• Providing overall behaviors of an
elastic, thermoelastic, viscoelastic and
viscoplastic composite

• Not good accuracy of estimating
overall behaviors

Aboudi (1981); Aboudi
(1989), Aboudi (1991)

GMC RVE divided
into any number
of subcells

• Composites with various
types of phase
arrangements and shapes

• Providing high accurate overall
behaviors of the composites

• Not good accuracy of estimating
local stress and strain fields in the
elastic and inelastic regions

Paley and Aboudi
(1992), Aboudi (1996)

• Determining the spatial variation of
the stresses in the phase with higher
accuracy

HFGMC RVE divided
into any number
of subcells

• Thermoelastic, thermo-
inelastic multiphase
composites

• Accurately simulating microlevel
stress and strain fields, and
macrolevel constitutive response of
multiphase materials subjected to
multiaxial loading

• Not suitable for aperiodic
composite materials

Aboudi et al. (2001),
Aboudi et al. (2003),
Aboudi (2004)

• Smart composite

• Sandwich structures
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stiffened panel. The genetic algorithm was used to optimize the
four design variables of composite plates: the stacking sequence of
the skin, the stacking sequence of stiffeners, the number of
stiffeners and the shape of stiffeners. The weight of composite
stiffened plates was reduced by about 18%. In addition, they also
optimized the post buckling of composite cylindrical shells and
3D braided composite stiffened plates, which improved the
maximum buckling loading and stiffness of the structure (Fu
et al., 2015; Pitton et al., 2019).

4 Summary

Lightweight fiber-reinforced composite structures have been
widely used in various industries and create great value. The
design technology for them has a significant development in
recent decades. Currently, research in design focuses on the
combination of multi-scale method, intelligent algorithm, and
artificial intelligence to design composite structures efficiently,
accurately, and intelligently for optimizing or developing novel
composite structures. The main traditional and intelligent
methods are compared in Table 2. Generally, the intelligent
method exhibits the capability of much faster property prediction
and optimization design for composites; whereas the analytic
analysis and finite element analysis show the ability to reveal the
mechanism of composite behaviors. The methods combining them
has the potential to achieve fast and realistic prediction and
optimization design of composite structures.

Although these techniques have many advantages and gradually
enter the realm of aerospace, there still are many disadvantages and
challenges, which will be overcome hopefully by using intelligent
technology soon.

With the development of intelligent technology, there are two
main foreseeable important trends in design and manufacture of
composite structures.

• Integrated and intelligent development of design process and
manufacturing process

• Design technology for intelligent composite structures.

An intelligent platform integrating of design and manufacturing
technologies of composites based on big data, interpretable machine
learning, digital twin, and industrial Internet of Things, will be
developed gradually. This platform will provide the integrated
technology including design, manufacturing, monitoring, self-
optimization, and self-healing during the full life cycle of
composites. Depending on the platform, the total research and
development time of composite structures can be reduced
significantly, their cost will be much lower, and the performance of
production will be enhanced. In a word, intelligence technology has the
potential to accelerate the development of design and manufacturing
processes of composite structures.

Additionally, many concepts about new advanced aircraft have
been proposed recently, for example, smart morphing aircraft. The
smart aircraft can sense the external environment information and
change shape or posture, which is an important development trend.

TABLE 2 Comparison of the traditional and intelligent methods for design of FRP composites.

Methods Function Limitation Application in methods

Analytic analysis • Property prediction • For simple structures • Method of Cells

• Optimization design • Time-cost • Homogenization

• Mechanism display

Finite element
analysis

• Property prediction • Time-cost for large models • Homogenization

• Optimization design • Difficult to model complex structures • Concurrent multi-scale

• Mechanism display • Methods combined with intelligent algorithm and AI
methods

Expert system • Property prediction • Mainly for simple structures • Methods combined with FE analysis, intelligent algorithm

• Optimization design • Poor learning ability

• Dependence on prior knowledge of domain
experts

Intelligent algorithm • Fast prediction of
properties

• For specific issues • Genetic algorithm

• Fast optimization design • Unable to reveal behavior mechanism • Evolutionary algorithm

• Cultural gene algorithm

Artificial intelligence • Fast prediction of
properties

• Unable to reveal behavior mechanism • ANN, CNN, DNN

• Fast optimization design • Machine learing

• Deep learning
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Their smart functions depend on the development of intelligent
composite structures which have the ability of self-perception, self-
healing and other smart functions. Therefore, the design and
manufacturing technologies integrating sensors and smart materials
on the composite structures need to be developed and is one of
development trend of advanced composite structures. Besides, many
countries are accelerating the exploration of outer space, for example,
the exploration of Mars. The success of the exploration depends on the
high-performancematerials for spaceships. Composite has the potential
to satisfy the requirement due to its flexible designability. With the
application extension of composites, the design and manufacturing
technologies will also evolve to fabricate more intelligent composite
structures with higher performance.
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