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Abstract—Recent studies show that the statistical channel state
information (SCSI) helps to largely increase the capacity of com-
munication systems when the instantaneous perfect CSI (IPCSI)
is unavailable. In this paper, we consider multi-user multiple-
input-single-output (MU-MISO) broadcast channels where the
transmitter has the knowledge of SCSI. The major issue con-
cerned in our work is to improve the average group-rate of the
whole system by scheduling users over different time slots. With
SCSI at the transmitter side, we are able to precode signals and
hence compute the theoretical achievable group-rate of arbitrary
user groups. Based on the group-rates, we propose tier-2 Munkres
user scheduling algorithm (T2-MUSA) which leads to higher
average group-rate than existing algorithms with generally better
fairness. The optimality of the proposed algorithm in energy-fair
user scheduling space is proved and we derive a lower bound
of a special case to verify the validity of our simulations. In
addition, many conventional user scheduling algorithms maintain
queue stability by solving a weighted sum-rate (WSR) problem,
using queue lengths to represent weight coefficients. Inspired by
T2-MUSA we propose a QoS-based Munkres user scheduling
algorithm (QB-MUSA) aimed at stabilizing queue lengths and
maximizing throughput. In results, we show that QB-MUSA
exhibits higher throughput than the conventional weighted sum-
rate (WSR) based algorithm.

Index Terms—MISO, Multi-user scheduling, Statistical CSI,
Munkres algorithm.

I. INTRODUCTION

MUltiple-input multiple-output (MIMO) system as a hot
topic in wireless communication is able to bring sub-

stantial improvement to system capacity and has attracted
considerable attention from relevant researchers. Early MIMO
studies mainly focused on single-user (SU) scenarios [1], [2],
while in some later works the focus has transitioned to multi-
user (MU) systems [3]–[5] which could realize higher data-
rates by utilizing space-division multiple-access (SDMA) and
multi-user diversity. In MU-MISO broadcast channel (BC),
many works are based on a crucial condition that instantaneous
and perfect channel state information (IPCSI) is available at
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the transmitter side [6]–[8]. Whereas, if IPCSI is unavail-
able, these transmission schemes degrade rapidly or even fail
to work [9]. Practically IPCSI is not feasible especially in
frequency-division duplex (FDD) channels. Generally speak-
ing, non-IPCSI can be divided into imperfect CSI [9]–[12] and
delayed CSI [13]–[15]. In particular, the CSI on the transmitter
side (CSIT) is usually obtained via feedback links, however
in BC system, the finite-rate uplink cannot accurately describe
the exact CSI. Therefore, the transmitter side only acquires an
estimated version of CSI with inevitable estimation errors. On
the other hand, the feedback delay can possibly render the
CSIT totally uncorrelated with IPCSI.

Apart from the CSI categories mentioned above, experi-
mental results show that statistical CSI (SCSI) as a feasible
and slowly varied measurement can be easily and accurately
obtained by the transmitter side [16], [17]. This measurement
is usually named after spatial correlation, antenna correlation
or joint correlation in initial works, and it turns out to be very
helpful in precoder design, transmission scheme scheduling
and thereby capacity estimation [3]–[5], [15], [18]. In SU-
MISO channels, an important idea of using SCSI is to precode
the transmit symbol along the strongest eigenvector (SE) to
the intended user [19]. On the other hand in [5], the optimal
precoders for Two-User (TU) multi-antenna BC in extremely
low- and high-SNR regime can be computed by closed-form
expressions. However, in intermediate-SNR regime, the pre-
coders must be obtained via solving an optimization problem
and the optimality is not proved. Nevertheless, the closed-form
ergodic group-rate expression of two-user case with arbitrary
precoding vectors is derived, which constitutes a significant
basis of our simulations. To overcome the complexity of
searching optimal precoders, [4] suggests to apply a set of
suboptimal beamforming vectors which can be easily found
and achieve nearly equivalent sum-rate to [5].

Simultaneously sending K different signals to K users
(K ≥ 2) usually requires the number of antennas to be larger
than or equal to the number of users [4], [5], [15]. Otherwise,
due to the limitation of spatial degrees-of-freedom (DoF), the
communication system has to consume DoF in other domain.
However along with the increment of antennas requirement,
the transmission scheme can be unfavorably complex and
the precoder design is more difficult. Even in a K transmit
antennas K users case with SCSI only, communicating with all
users at the same time is inefficient because each link suffers
severe inter-user interference. It is noticed that the inter-
user interference is inevitable because of following reasons:
first, transmit correlation matrices are never rank-deficient
[20], which means we cannot find precoders that perfectly
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eliminate the interference from other users; second, even if
we assume the minimum eigenvalue of a user’s correlation
matrix is small enough such that we may ignore it and we
project other users’ signals onto the null space, interference
still exists due to the uncertainty of CSI. Nevertheless, in the
same system model of our study, [21], [22] conduct research
based on an approximated expression of signal-to-interference-
and-noise ratio (SINR), where [21] lets the BS simultaneously
transmit data to all users with a goal to maximize the minimum
SINR among the users and [22] focuses on maximizing
the weighted sum-rate (WSR). In addition, [23] proposes a
novel transmission scheme that can achieve high sum-rate by
ingenious but complicated non-linear encoding and decoding
processes.

To avoid inter-user interference and system complexity, we
stick to one-user or two-user mode while we still attempt to
increase the ergodic sum-rate via user scheduling. For instance,
in [15] a Round-Robin fashion (RRF) user scheduling is used
to deal with MU scenarios. Also in [12] an adaptive grouping
algorithm could achieve higher data-rate per user than RRF.
Hence we notice in MU scenarios, by proper user scheduling,
the throughput of the communication system could be effec-
tively improved. To this topic, there are two related works
[24], [25] which choose precoders in [19] and apply Munkres
algorithm [26] [27] to handle the user scheduling problem.
However, in those two works, the authors laid a constraint
that each user could only be allocated to one group. Thus,
the scheduling problem actually transforms into a general
maximum weight matching problem in graph theory, which
can be solved by [28]. In this paper, we explore the possibility
to further enhance systematic performance via user scheduling.
Against the current literature, the main contributions of this
paper are as follows:

• To avoid inter-user interference and to increase aver-
age group-rate of the communication system, we firstly
propose a novel user scheduling algorithm (T2-MUSA)
based on SCSI. In our algorithm, the energy consumed
for each user is the same and all users are allowed to
be allocated into more than one user group. Compared
with existing algorithms, T2-MUSA realizes higher group
rates and achieves considerably satisfactory fairness.

• We show that the achievable group rate when the users
can be allocated into more than two groups is upper
bounded by that of our proposed T2-MUSA. In short, we
prove the optimality of our algorithm. We find a lower
bound of the ergodic group-rate, when the dominant
eigenvalue of each user’s transmit correlation matrix is
uniformly distributed.

• We propose another user scheduling algorithm (QB-
MUSA) which deals with the queue stability problem.
In simulations, we show that proposed QB-MUSA can
outperform conventional WSR-based user scheduling al-
gorithms, especially when the arrival rate of each user is
comparable to others.

The remainder of this paper is arranged as follows. Section
II elaborates the system model of MU-MISO BC in addition
with precoder design and problem formulation. In Section III,

we propose algorithm TU-MUSA and discuss the optimality
and rate approximation. In Section IV, we list the steps
of the proposed algorithm QB-MUSA to solve the queue
stability problem. Section V shows numerical results and we
summarize the paper in Section VI. Some proofs are presented
in Appendices.

Notations: We use uppercase and lowercase boldface letters
to denote matrices and vectors respectively. Matrices transpose
and Hermitian transpose are denoted by (·)T and (·)H respec-
tively. The elementwise conjugate of a complex number or
matrix is denoted by (·)∗. Expectation operator is denoted by
E[·]. CN (0, 1) and U(a, b) stand for zero-mean unit variance
complex Gaussian distribution and uniform distribution within
the interval (a, b) correspondingly. [M]i,j denotes the (i, j)
entry of the matrix. ‖·‖ is the Frobenius norm operation.
umax (·) and umin (·) denote the eigenvector corresponding
to the largest and least eigenvalue λmax (·) and λmin (·)
respectively. tr (·) and rank (·) denote the trace and rank of a
matrix. mod (X,Y ) returns the modulus after division of X
by Y . I is reserved for the identity matrix while N, Z, C and
R are reserved for natural number (including zero), integer
complex number and real number set respectively.

II. SYSTEM MODEL

We consider MU-MISO Rayleigh fading BC where the base
station is equipped with Nt antennas (Nt > 2) and each user
has a single antenna, see Fig. 1. We define G as a set of all
associated users of a BS and without loss of generality, if there
are K users, it can be expressed as G = {1, 2, ...K}. IPCSI
is only available at receiver side while SCSI is known to both
ends. The channel vector between user k and BS is denoted
as hk and can be written as

hk = gkR
1
2

k (1)

where gk ∈ C1×Nt is independently and identically distributed
(i.i.d) ∼ CN (0, I). Rk is the long-term observed transmit
correlation matrix (SCSI) of user k that can be eigenmode
decomposed as

Rk = E[hHk hk] = UkΛkU
H
k (2)

where Uk ∈ CNt×Nt is a unitary matrix whose columns are
the eigenvectors of Rk and Λk = diag (λk1, λk2, ...λkNt) is a
diagonal matrix whose diagonal entries are the corresponding
eigenvalues normalized to tr(Λk) = Nt. The reason why we
can make this normalization is due to the fact that Rk is a
positive definite Hermitian matrix i.e. each eigenvalue is a
positive number. Particularly, Λk = I means that the link
towards user k is spatially uncorrelated while rank(Λk) = 1
indicates the link is fully correlated [29].

On the BS side, we precode signals with wk ∈ CNt×1

before transmitting them where two modes could be opted
namely, SU mode and TU mode. For SU mode the BS
sends one symbol to one user, while for TU mode it si-
multaneously transmits to two users with each user receiving
one symbol. A user group can then be defined as πi =
{(i1, i2, ..., iNi

)|i1, i2, ..., iNi
∈ G}, where Ni is the size of

this user group. A user schedule is a set of user groups
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Fig. 1: System model

which the BS will send data to each one of them periodically,
S = {π1, π2, ...πL} (L is the length). It is noteworthy that S
is a multiset which allows duplicated elements.

Throughout this paper, we only consider Ni = 1, 2 (SU or
TU) and user schedules containing user groups with Ni > 2
are beyond the scope of our work. Suppose we have a user
group πi = (k, j), the received signal of user k is

yk =
√
ρhkwksk +

√
ρhkwjsj + nk (3)

where ρ = P/Ni and P is the total transmit power constraint,
sk denotes the signals intended for user k with |sk|2 = 1,
nk ∼ CN (0, 1) stands for normalized complex additive white
Gaussian noise. If πi is in SU mode, we omit the second term
of (3) and the associated terms in the sequel. Thus the signal-
to-interference-and-noise ratio (SINR) can be found as

SINRk =
ρ|hkwk|2

ρ|hkwj |2 + 1
. (4)

Consequently, we have the group-rate1 of user group πi

Rπi =
∑
k∈πi

Rk|πi
=
∑
k∈πi

E [log (1 + SINRk)] (5)

and the average group-rate of a user schedule

R̄S =
1

Ni

∑
πi∈S

Rπi . (6)

where Rk|πi
is the achievable rate of user k in πi. According

to [5], we have the closed-form expression of Rk|πi
for both

1To be consistent with [5], we use all logarithms to base e. Hence in all
calculations, the rate unit is nats/s/Hz whereas in graphs we multiply results
by log2 e to convert the unit back into bits/s/Hz.

SU mode and TU mode. Specifically if πi is in SU mode, it
is given by

Rk|k = h(ρAk) (7)

where

Ak = wH
k Rkwk (8)

h(x) , exp(
1

x
)E1(

1

x
), x ∈ (0,∞) (9)

with E1(·) being the Exponential integral function, namely
E1 =

∫∞
x

e−t

t dt. On the other hand, suppose we have two
users (k and j) in πi, the closed-form expression of user k’s
achievable rate can be written as

Rk|(k,j) =
Λk,1h(ρΛk,1)−Λk,2h(ρΛk,2)

Λk,1 −Λk,2
− h(ρBk) (10)

where

Λk,1 =
1

2

(
Ak +Bk +

√
(Ak −Bk)

2
+ 4C2

k

)
(11)

Λk,2 =
1

2

(
Ak +Bk −

√
(Ak −Bk)

2
+ 4C2

k

)
(12)

with Ak the same as (8) and Bk = wH
k Rjwk, Ck =∣∣wH

k Rjwj

∣∣. What’s more, we also have to define

Rk|πi
= 0, k /∈ πi. (13)

A. Statistical Precoders

We now analyze the precoder design for both SU and TU
modes. When choosing precoders, we tend to maximize the
group-rate of the corresponding user group and simplify the
implementation complexity. In SU mode, we have the SNR of
user k as

SNRk = ρ|hkwk|2 = ρwH
k Rkwk, (14)

therefore, the optimal precoder of a single user (OPSU) should
be along the strongest eigenvector of the transmit correlation
matrix [19] i.e.

wk = umax (Rk) . (15)

This precoder structure is applied to every user throughout
the works of [24], [25] for both SU and TU mode, although it
is not actually designed for TU groups. On the other hand,
[5] provides the optimal precoders for TU mode (OPTU)
and these precoders have different expressions in different
SNR regime (see TABLE I). To simplify implementation
complexity [4] proposes a set of sub-optimal precoders for

TABLE I: TU Mode Precoders Comparison

OPTU [5] SOPTU [4] OPSU [19], [24], [25]

Low SNR
wk = umax (Rk)

wj = umax (Rj)

wk = umax

(
(ρRj + I)−1 Rk

)
wj = umax

(
(ρRk + I)−1 Rj

) wk = umax (Rk)

wj = umax (Rj)Intermediate SNR

wk = umax

(
(α(ρ)Rj + I)−1 Rk

)
wj = umax

(
(β(ρ)Rk + I)−1 Rj

)

High SNR

wk = umax

(
R−1

j Rk

)
wj = umax

(
R−1

k Rj

)
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Fig. 2: Sum-rate performance comparison with different TU mode
precoders. Results are averaged over 500 realizations of Nt = 2,
|tk| ∈ U (0, 1) and φk ∈ U (0, 2π).

TU mode (SOPTU) which can be found by a simple closed-
form solution. As ρ approaches 0 or infinity, SOPTU precoders
converge to the OPTU precoders and in the intermediate SNR
regime, SOPTU can be seen as a special case where α(ρ) = ρ
and β(ρ) = ρ. However, OPSU precoders keep consistent
with the structures of low-SNR OPTU precoders which are
irrelevant with the individual transmit power ρ. In Fig. 2 we
compare the performance of these three precoders at different
SNR levels where the BS is equipped with 2 transmit antennas.
The simulation result is averaged over 500 random TU groups
with each user generated by the single parameter exponential
correlation model [30] namely,

Rk =


1 tk · · · tM−1

k

tHk 1 · · · tM−2
k

...
...

. . .
...

(tHk )M−1 (tHk )M−2 · · · 1

 (16)

where the correlation coeficient tk = |tk| ejφk is randomly
generated by |tk| ∈ U (0, 1) and φk ∈ U (0, 2π).

Remark 1: To the best of our knowledge, the closed-form
statistical optimal precoders for TU mode have not been found
yet. SOPTU precoders demonstrate a comparable performance
to OPTU, although in some rare cases the group-rate difference
between these two might be distinct. OPTU and SOPTU
outperform OPSU in all SNR regimes. Therefore, in this paper
we choose the SOPTU structure as the TU mode precoders.

B. Problem Formulation

Maximizing the average group-rate leads to one solution
that the user schedule only consists of the optimal user
group. However, this schedule is impractical since we have
to consider sending data to all associated users rather than
some of them. To this end, we put some constraints on the
user schedule and first of all, it should be a complete schedule
whose definition is given below.

Definition 1: A complete user schedule includes all users
in G.

Second, the user scheduling should be ’fair’ to all users
in a certain sense and there are two factors we mainly take
into consideration in terms of fairness issue i.e. frequency and
energy. In contrast with the conventional meaning in com-
munication engineering, ’frequency’ here means the number
of appearances of an individual user in a schedule. Basically
speaking, a fair algorithm of a certain resource lets all users
equally share this resource. We define SFF as the space
of frequency-fair user schedules and SEF as the space of
energy-fair schedules. [24] and [25] give two frequency-fair
user schedules algorithms (FFUSA) with almost equivalent
performance. In these two FFUSA the frequency of each
user is strictly limited to 1 and this constraint actually has
a negative effect on the performance when user number is
an odd number. We will show and discuss this effect in the
Numerical Results part. Additionally, it can be easily seen that
the RRF schedule belongs to both frequency-fair and energy-
fair schedules, SRRF ∈ SEF ∩ SFF . Hence the first problem
we try to solve in this paper is to find a user scheduling
algorithm which leads to an energy-fair or frequency-fair or
even better, both fair schedule that maximizes the average
group sum-rate in (6) namely

P1 : arg max
S∈SEF∪SFF

R̄S . (17)

In the above problem, we do not involve other factors that
might give priorities to some users, which means we conceive
that all users are equally important and require presumably
equivalent quality of services. Hence, we consider the fairness
metric in terms of the data-rate of individual users. In details,
we compute the achievable rate of user k in a user schedule
as

Rk|S =
∑
πi∈S

Rk|πi
. (18)

And then we make the Jain’s fairness index [31] as our fairness
metric, namely

F =

(∑K
k=1Rk|S

)2

K
∑K
k=1R

2
k|S

. (19)

This metric ranges from 1/n to 1, where 1/n stands for the
worst case that only one user occupies the whole channel and 1
stands for the best case that every user has the same data-rate.

From another point of view, the meaning of user scheduling
is to stabilize queue lengths. Specifically, if we denote Ak(t)
as the arrival process, Qk(t) as the queue length and Rk(t)
as the data-rate to user k in time slot t, we have the queue
length in the next time slot as

Qk(t+ 1) = Qk(t)−Rk(t) +Ak(t), (20)

where Rk(t) cannot be larger than Qk(t).
To keep user queues stable is actually to design a feasible

user scheduling algorithm A that solves the minimization
problem

P2 : arg min
A

K∑
k=1

Qk(t), ∀t, (21)



5

so that the data stored on the BS side will not exceed the
buffer size. To achieve this goal, both high data-rates and
a balance over user queues are expected. Conventionally,
this problem can be solved by weighted sum-rate (WSR)
maximization [22], where queue lengths may be directly used
as the weight coefficients for user data-rates, so that users
with a long queue length have advantage in user scheduling.
We notice that this kind of scheduling algorithm is greedy,
because they focus on maximizing momentary data-rate and
queue reduction. However the problem we concerned is a long
term optimization problem. The fairness in terms of frequency
or energy in this problem therefore is not important, as the
balance of user queues stand for another kind of fairness.

III. ENERGY-FAIR USER SCHEDULING ALGORITHM

In this section we focus on the problem P1 and we consider
to release the frequency of each user to any positive integer,
in other words, a user can be in more than one group.
For instance, the following user schedule is a frequency-fair
schedule with each user’s frequency equal to 2.

S = {(1), (3), (1, 2), (2, 4), (4, 3)}. (22)

To gain the maximum throughput, we assume that the BS
inherently work with full power no matter in SU mode or TU
mode. In addition, we make the following definition.

Definition 2: The shortest complete user schedule that
satisfies

S? = arg max
S∈SEF∩SFF

R̄S (23)

is defined as the optimal fair schedule.
We emphasize that there are infinite number of schedules

satisfying (23) e.g. a schedule that consists of duplicated
copies of S? namely S = {S?, S?, ..., S?}. Therefore, we
define the optimal fair schedule as the shortest one and then
Theorem 1 is found true.

Theorem 1: If S? is the optimal fair schedule defined in
Definition 2, S? must be composed of either fully SU groups
or fully TU groups.

Proof: See Appendix A.
Since there is only one shortest permutation in terms of

complete user schedule with fully SU groups, the optimal fair
schedule in this case can be written as

S?1 = {(1), (2), ..., (K)}. (24)

Meanwhile, there are many permutations in terms of
complete user schedule with fully TU groups. Nevertheless
Munkres algorithm is able to efficiently solve this problem
within O(K3) time so that we have a user group set S?2 .
Therefore (23) becomes

S? = arg max
S=S?

1 or S?
2

R̄S . (25)

As expressed in (25), the optimal fair schedule can be easily
found. Normally, S?2 has higher sum-rate than S?1 has in low
SNR regime while S?1 wins in high SNR regime, and this will
be discussed in the sequel. However, if higher average group-
rate beyond R̄S? is expected, we must lose some fairness either
in terms of energy or frequency, for example, the mentioned
[24] and [25] only focus on frequency fairness.

A. Tier-2 Munkres User Scheduling Algorithm

In our work, we mainly focus on the fairness in energy
domain which means each user consumes the same amount
of energy while does not necessarily has the same frequency
in the schedule. We define a tier-N schedule by that the
maximum energy consumed by a user in the schedule is equal
to NP

2 e.g. the schedule in (22) is a tier-3 schedule. We now
propose tier-2 Munkres user scheduling algorithm(T2-MUSA)
which is elaborated in Algorithm 1.

Algorithm 1 T2-MUSA

1: Initialize group-rate distribution matrix D as a K × K
zero matrix i.e. D = 0.

2: for i = 1 : K do
3: for j = 1 : K do
4: if i = j then
5: make the (i, i)th entry equal to the achievable rate

of user i in SU mode, [D]i,i = Ri.
6: else
7: make the (i, j)th entry equal to the group-rate of

TU group (i, j), [D]i,j = R(i,j).
8: end if
9: end for

10: end for
11: Take the opposite matrix of the group-rate distribution

matrix, D = −D.
12: Apply Munkres algorithm to the opposite matrix and find

the optimal tier-2 energy-fair schedule S?EFT2.

We show a group-rate distribution matrix with 4 users in
(26), and each entry of D represents the group-rate in either
SU or TU mode while energy consumed for every group is
the same. Moreover, the definition of the optimal energy-
fair schedule is the same as Definition 2 but we reduce the
searching domain to S ∈ SEF in (23).

D =


R1 R(1,2) R(1,3) R(1,4)

R(2,1) R2 R(2,3) R(2,4)

R(3,1) R(3,2) R3 R(3,4)

R(4,1) R(4,2) R(4,3) R4

 . (26)

It is noteworthy that Munkres algorithm is designed for finding
a set of K independent entries (Definition 3) of a K×K matrix
such that the sum of these entries is the smallest among all
permutations. Therefore, we convert each entry of D into its
opposite number before using Munkres algorithm to find the
permutation with maximum sum-rate.

Definition 3: A set of entries of a matrix are independent
if none of them occupies the same row or column with others
[27].

Specifically, T2-MUSA gives a K×K assignment matrix A
containing independent ‘1’s that indicate the assigning status
of corresponding user groups i.e.

[A]ij =

{
0 user group (i, j) is not assigned,
1 user group (i, j) is assigned.

(27)

Remark 2: For a given assignment matrix A, suppose n is
the maximum number of independent ‘1’s of A, then we can
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find n lines (rows or columns or both) which contain all the ‘1’
elements [26]. (This theorem constitutes one of the important
bases of Munkres algorithm.) Besides, we emphasize that in K
users cases Munkres algorithm can always find an assignment
matrix A with K independent ‘1’ elements as long as each
entry of the group-rate distribution matrix is a real number,
which is to say the resulting matrix A always corresponds
to a complete schedule since there must be a ‘1’ element in
each row (or column). Actually to a wide sense, any set of
K independent ‘1’s forms a complete schedule but A is the
optimal one.

The algorithm does not exclude some frequency-fair sched-
ules e.g. S?1 or S?2 can be found as long as it is the optimal
permutation. Particularly, S?1 corresponds to the case A = I
and S?2 satisfies diag{A} = 0. Any assignment matrix except
these two special cases stands for a schedule that only lies in
energy-fair rather than frequency-fair space.

B. Optimality and Rate Analysis

In this section, we prove the optimality of T2-MUSA in
the energy-fair schedule space. By optimality, it means the
schedule found by our proposed algorithm achieves highest
average group-rate and is with shortest length. Besides, we
also derive a lower bound of the average group-rate in a special
case.

Lemma 1: For a given group-rate distribution matrix and
an arbitrary tier-N schedule, if M = mN,m ∈ Z+, we can
always find a tier-M schedule such that

R̄STM
≥ R̄STN

. (28)

Proof: Since at least we can have a tier-M schedule which
is composed of m duplicated copies of the tier-N schedule i.e.

STM = {STN , STN , · · · , STN︸ ︷︷ ︸
m

}. (29)

Hence we complete the proof.
In Lemma 1, we do not specify the tier-N schedule as neither

an energy- or frequency-fair schedule. So it works for all
schedules even for incomplete user schedules. By this Lemma
we can write

R̄S?
EFT2

≤ R̄S?
EFT2m

, m = 2, 3, 4 · · · . (30)

where S?EFT2m could be efficiently found by applying
Munkres algorithm to the mK × mK extended group-rate
distribution matrix

Dm =


D D · · · D
D D · · · D
...

...
. . .

...
D D · · · D


︸ ︷︷ ︸

m

. (31)

Specifically, we can find an mK×mK assignment matrix Am

with mK independent ‘1’ elements using Munkres algorithm.
For each ‘1’ element in Am, take the one located at the (i, j)th

entry as an example, we make the coordinate transfer by{
i′ = mod(i− 1,K) + 1,

j′ = mod(j − 1,K) + 1.
(32)

Then we add the group (i′, j′) into the schedule and in this way
we build up the optimal tier-2m energy-fair schedule S?EFT2m.

Lemma 2: Suppose B is the resulting matrix by applying
Mapping algorithm in Separation Step 1 to the assignment
matrix Am, there must exist K independent ‘1’s in B.

Separation Step 1 Mapping algorithm

1: Initialize B as a K ×K zero matrix, B=0.
2: for i = 1 : mK do
3: for j = 1 : mK do
4: if [Am]i,j = 1 then
5: Make the coordinate transfer by (32) and obtain

updated coordinate i′ and j′.
6: Change the corresponding bit in B as [B]i′,j′ = 1.
7: end if
8: end for
9: end for

Proof: See Appendix B for detailed proof.
Separation Step 2: It is notable that some ‘1’ elements

of Am may refer to the same entry in B by the mapping
algorithm e.g. the ‘1’ elements positioned at (1, 1)th and (K+
1,K+1)th entry of Am are both mapped to the (1, 1)th entry
of B. In other words, a ‘1’ element in B may be associated
with many ‘1’s of Am. We now denote a matrix C1 containing
K independent ‘1’s in B and for each ‘1’ element in C1,
we find its associated ‘1’ element in Am (if there are more
than one associated ‘1’s, we randomly choose one of them).
Then, we remove the row and column where the associated ‘1’
element lies from Am. By doing so, we remove K rows and K
columns from Am and thereby form a new (m−1)K× (m−
1)K square matrix denoted by Am−1. It is plain to see that
removing rows or columns from a assignment matrix does not
destroy the independence of ‘1’ elements, therefore, we have
(m − 1)K independent ‘1’s in Am−1 which means it forms
a tier-2(m − 1) complete schedule ST2(m−1). Together with
the tier-2 complete schedule formed S1

T2 by C1, we actually
separate the optimal energy-fair schedule S?EFT2m into two
complete schedules i.e.

S?EFT2m = {SEFT2(m−1), S
1
EFT2}. (33)

Corolarry 1: The optimal tier-2m energy-fair schedule
S?EFT2m can be separated into m tier-2 complete schedules,
in mathematics we have

S?EFT2m = {S1
EFT2, S

2
EFT2, · · · , SmEFT2}. (34)

Proof: With the help of Remark 2 and Lemma 2, it can be
easily envisioned that if we repeat the procedure of Separation
Step 1 and 2, (34) could be eventually achieved, which
completes the proof.

Here we give a simple example of what is done in the
Separation process. Suppose we have 3 users and we have
a tier-4 assignment matrix in (35) whose size is 6 × 6 and
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corresponding arrangement (using coordinate transfer (32)) is
given by (36), i.e.

A2 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0

 , (35)

SEFT4 = {(1, 2), (2, 3), (3), (1, 2), (2, 1), (3, 1)}. (36)

As we can see, the energy expended by each user is 2P which
is consistent with a tier-4 energy-fair arrangement. Now we
apply Separation Step 1 to map A2 into B and get

B =

0 1 0
1 0 1
1 0 1

 . (37)

Thus we can find 3 independent ‘1’ elements in B and
put them into C1. Then, we remove the corresponding ‘1’
elements in A2 and their columns and rows and get A1,

C1 =

0 1 0
0 0 1
1 0 0

 , A1 =

0 1 0
1 0 0
0 0 1

 . (38)

Now, C1 and A1 form two tier-2 energy-fair arrangements
and we successfully separate SEFT4 by

SEFT4 = {(1, 2), (2, 3), (3, 1)}︸ ︷︷ ︸
C1

+ {(1, 2), (2, 1), (3)}︸ ︷︷ ︸
A1

. (39)

With Lemma 1 and Corolarry 1, we are ready to prove the
optimality of T2-MUSA.

Theorem 2: The optimal tier-2 energy-fair schedule is the
optimal energy-fair schedule among all tier-N schedules where
N ≥ 2.

Proof: Refer to Appendix C for proof.
Although S?EFT2 is proved to be the optimal schedule

in energy-fair schedule space, its optimality in the joint
space of energy-fair and frequency-fair schedule spaces cannot
be guaranteed. However, in ergodic experiments, T2-MUSA
demonstrates its superiority over frequency-fair algorithms and
this will be confirmed in our later simulations.

In practical wireless transmission, the transmit correlation
matrix is never rank-deficient which means the eigenvalues
should always be larger than zero. According to the SINR
found in (4), we know that the inter-user interference inher-
ently exists in TU mode transmissions. In other words, we
cannot find a precoder that could manage to perfectly eliminate
this interference since at the very least it should be no less
than ρλmin, where λmin is the minimum eigenvalue of the
other user in the TU group. For this reason, the group-rate
finally saturates to a certain level as SNR increases and this
phenomenon is well discussed in [4]. Meanwhile for a SU
group, the transmitted signals never suffer interference and
hence the achievable rate goes up along with the transmit
power. We can easily find the DoF of SU mode rate by

DoFsu = lim
P→∞

log(1 + Pλmax)

logP
= 1. (40)

Hence in extremely high SNR regime, due to that TU mode
transmission severely underperforms SU mode, both energy-
fair and frequency-fair schedules converge to all-SU-group
schedules i.e. S?1 (24). As a result of this situation, we
can deduce the lower bound of the average group-rate of
our proposed algorithm and it is also the lower bound of
frequency-fair algorithms.

Proposition 1: If the maximum eigenvalues of the statistical
transmit correlation matrices are uniformly i.i.d within the
interval (a, b) such that 1 ≤ a ≤ b ≤ Nt, then the average
group-rate of S?EFT2 is lower bounded by

R̄S?
EFT2

≥ 1

P
(g (bP )− g (aP )) . (41)

where g(x) is defined in (42) with γ being the Euler-
mascheroni constant.

g (x) =
log2 x

2
+ (x+ 1− γ) log x− (γ + 1)x

+
3

4x
+

1

x2
, x ∈ (0,∞).

(42)

Proof: See Appendix D for detailed proof.
As we discussed before, SU mode transmissions only have

the rate superiority in extremely high SNR regime. Therefore,
the lower bound (42) is loose in low SNR regime and turns
to tight as SNR rises.

IV. QOS-BASED USER SCHEDULING ALGORITHM

In this section, we propose a user scheduling algorithm
inspired by T2-MUSA and aimed to solve problem P2. we
suppose the initial queue lengths (when t = 0) of all users are
written as i ∈ RK+ and Let r(t) = [R1(t), R2(t), . . . , RK(t)]

T

denote the users’ data-rate set. Besides, R(t) denotes the
region of rates which depicts the space that r(t) can take values
from and actually

R(t) =⋃
∀πi

{
a ∈ RK

∣∣∣[a]k = min
{
Rk|πi

, Qk(t)
}
, k = 1, 2, ...,K

}
(43)

gives the mathematical definition. Since we only consider TU
or SU grouping, r(t) has at most two non-zero entries in
a particular time slot. So far, we can make the following
equation,

K∑
k=1

Qk(T ) = ‖i‖+

T∑
t=1

K∑
k=1

Ak(t)−
T∑
t=1

‖r(t)‖ (44)

(recall that Qk and Ak denote the ongoing queue length and
arrival process). Because the initial queue lengths and arrival
process are independent to our user scheduling algorithm, the
problem of minimizing the amount of queueing data can be
equivalently converted into maximizing the throughput over
time i.e.

arg max
r(t)∈R(t)

1

T

T∑
t=1

‖r(t)‖ . (45)

To solve the above problem, we borrow the idea of using
queue lengths to represent importance (weights) of users and
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propose a QoS-Based Munkres user scheduling algorithm
(QB-MUSA) as in Algorithm 2.

Algorithm 2 QB-MUSA

1: Initialize group-rate distribution matrix D as a K × K
zero matrix i.e. D = 0.

2: for i = 1 : K do
3: for j = 1 : K do
4: if i = j then
5: make the (i, i)th entry equal to the achievable rate

of user i in SU mode, [D]i,i = Qi(t)Ri.
6: else
7: make the (i, j)th entry equal to the group-rate

of TU group (i, j), [D]i,j = Qi(t)Ri|(i,j) +
Qj(t)Rj|(i,j).

8: end if
9: end for

10: end for
11: Take the opposite matrix of the group-rate distribution

matrix, D = −D.
12: Apply Munkres algorithm to D and find K user groups

and K associated independent entries k ∈ RK− .
13: Find the minimum entry of k and schedule the correspond-

ing user group for next time slot.

In order to make performance comparison, a greedy user
scheduling algorithm (GUSA) is designed. However, we find
out that the user scheduling algorithm which solves the WSR
problem namely max

∑K
k=1WkRk in our defined system model

remains unknown. Although [22] attempted this problem, the
SNR used in the paper is an approximation. We then make the
GUSA always schedule the user group with minimum value
in D. As we stated in the introduction part, the inter-user
interference is inevitable in SCSI channels due to the nonsin-
gularity of transmit correlation matrices and the uncertainty
of channel instance. As more users join the group, the inter-
user interference would increase rapidly. So, we consider the
GUSA would act in a very similar manner as the algorithm in
[22].

The intuition behind QB-MUSA is that Munkres algo-
rithm has long-term consideration for user schedules. However
GUSA is kind of short-sighted, only focusing on momen-
tary sum-rate maximization while ignoring the subsequent
effects. Since the energy consumed in each entry is the same,
Munkres algorithm always produce energy-fair schedules,
whereas ‘energy-fair’ is not a constraint in problem P2. Hence
we overcome the drawback by only choosing the user group
with maximum weighted group-rate (step 13) in the schedule
instead of accepting the whole resulting schedule. However,
the superiority of QB-MUSA over GUSA is not guaranteed.

V. NUMERICAL RESUTLS

In this section we provide numerical results to show the
performances of our proposed algorithms. The user transmit
correlation matrices are in the form of the single parameter
exponential model (16) and we apply the SOPTU structure
as our precoders as mentioned in Table I. For comparison, we
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Fig. 3: Comparison between T2-MUSA group-rate and Lower bound
in Proposition 1 with 500 realizations of Nt = 2, K = 10, |tk| ∈
U (1, 1.2) or U (1.6, 1.8) and φk ∈ U (0, 2π).

choose the FFUSA in [24] where OPSU precoders are applied.
However in this paper we only focus on the user scheduling
algorithms. To make fair comparison, we change the precoders
of FFUSA to SOPTU structure as well, so that we can get rid
of the influence by precoders. All group-rates are obtained
by the closed-form expressions given by [5]. Besides, a large
family of transmit correlation matrix models are tested in our
study to support the superiority of T2-MUSA. In Figures,
RRF denotes Round-Robin Fashion user schedules that include
every possible TU groups but no SU groups and they can
be regarded as normal schedules with no algorithm applied.
In addition we also compare our proposed algorithm with
the simultaneous transmission scheme in [21] with individual
SINR constraints (ISC). We set the individual target SINRs of
ISC to 1, so the algorithm tends to balance each user’s SINR
to the same maximum level.

Since the ISC scheme finds precoders via a optimization
process, the complexity is non-polynomial. The difference of
complexity between T2-MUSA and FFUSA lies in the user
scheduling algorithm, because generating the group-rate distri-
bution matrix (26) should be prepared for both algorithms. The
computational complexity for Munkres algorithm is known by
O(K3). While, for the general maximum weight matching
problem, the fastest algorithm yet also needs a O(K3) time
to solve the problem [28].

A. Lower Bound of Group-Rate

We first present the comparison between the lower bound in
Proposition 1 and the simulation results. Since the proposition
only works when the maximum eigenvalue is uniformly dis-
tributed, we consider the number of transmit antennas Nt = 2,
the number of users K = 10 and the correlation coefficient
|tk| ∈ U (a− 1, b− 1) and φk ∈ U (0, 2π) where a and b
satisfy the condition in the proposition. Thus after some trivial
mathematical manipulations, it can be found that the maximum
eigenvalue follows the distribution λmax ∈ U (a, b). As shown
in Fig. 3, we test two intervals i.e. λmax ∈ U(1, 1.2) and
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and conventional algorithms. Results are averaged over 500 realiza-
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Fig. 5: Comparison of group-rates versus multi-users with 1000
realizations of Nt = 8 and power fixed at P = 15 dB, |tk| ∈ U (0, 1)
and φk ∈ U (0, 2π).

λmax ∈ U(1.6, 1.8) and it shows in these two cases the lower
bounds are tight in high SNR regime. In addition, this figure
also shows the validity of our simulations.

B. Average Group-Rate Comparison in Different SNRs

The performance of user scheduling algorithms varies from
different numbers of transmit antennas, numbers of users
and transmit correlation matrix models. Fig. 4 shows the
simulation results of transmit antennas Nt = 8 and user
number K = 15. The group-rate curves are averaged over
500 user-set realizations and in each realization, we randomly
generate 15 users. The ergodic group-rate of the RRF user
schedule actually represents the expected group-rate of an
arbitrary TU group. As can be seen from the figure, T2-
MUSA and FFUSA effectively improve the ergodic group-
rate compared with RRF. The group-rate of T2-MUSA is
higher than FFUSA especially in high SNR regime. When
SNR reaches around 25 dB, there is a 3 dB gap in terms of
transmitting power between T2-MUSA and FFUSA. However
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Fig. 6: Fairness comparison over different SNRs with 500 realizations
of Nt = 8,K = 15, |tk| ∈ U (0, 1) and φk ∈ U (0, 2π).

ISC demonstrates the worst performance among all algorithms,
which actually shows an example of that if the BS tends to
simultaneously send data to more users, the overall data-rates
would degrade instead.

C. Average Group-Rate Comparison in Different Numbers of
Users

In Fig. 5, we still compare the ergodic group-rates of T2-
MUSA with other algorithms but in terms of different numbers
of users. The BS is equipped with 8 antennas and the transmit
power is fixed at P = 15 dB. As RRF scheduling implies
expected group-rate of TU groups, it does not benefit from
multiuser diversity. On the contrary, ISC suffers from the in-
crement of users as the inter-user interference increases along
with rising of the number of users. T2-MUSA outperforms
other algorithms, however as the number of users rises, all
algorithms tend to saturate at some certain group-rates. An
interesting phenomenon is observed from the curve of FFUSA,
that is, the performance degrades when the number of users is
odd. It arises from the frequency constraint upon the algorithm
i.e. each user can only be allocated to one user group, which
means, they must choose one user to be in SU group when the
total number of users is odd. Meanwhile, in low SNR regime
where usually TU mode transmissions have the advantage
in group-rate, if a user schedule must include a SU group,
the data-rate performance has to thus degrade. However T2-
MUSA is immune to this effect, because it can arrange every
user into TU groups if it is preferable.

D. Fairness Comparison

In Fig. 6 we focus on the fairness issue of our proposed
algorithm and existing algorithms. Due to that FFUSA, T2-
MUSA and even ISC respectively achieve their fairness in
different aspects, it is hard to tell which one is fairer. So
we ignore the differences among these algorithms in energy
consumption or user frequencies or individual SINR and
we consider the fairness in the view of achievable rates of
individual users. As mentioned before, we adopt Jain’s fairness



10

0 100 200 300 400 500 600
5.6

5.8

6

6.2

6.4

6.6

Time (s)

T
hr

ou
pu

t (
M

b/
s)

(a) Ergodic sum arrival rate = 8 Mb/s

 

 

QB−MUSA
GUSA

0 100 200 300 400 500 600
4.5

5

5.5

6

6.5

Time (s)

T
hr

ou
pu

t (
M

b/
s)

(b) Ergodic sum arrival rate = 5 Mb/s

 

 

QB−MUSA
GUSA

Fig. 7: Throughput comparisons between QB-MUSA and GUSA

index to judge the issue and Fig. 6 indicates the results with
basic simulation settings the same as above. Although in our
proposed algorithm, users are with different frequencies, the
data-rate fairness index of T2-MUSA is higher than FFUSA
especially in high SNR regime. RRF user schedules treat every
user equally in whatever cases, hence it lies at a high fairness
level with a straight flat line. The ISC scheme attempts to
maximize and equalize each user’s date-rate, if we set the
target individual SINRs equal to each other. So ideally the
Jain’s fairness index of ISC schedules should be inherently
1, meaning that the schedule is absolutely fair. However, due
to the use of approximated SINR, users’ data-rates derived
from real SINR disperse a little. Even so, it makes the highest
fairness score among the tested algorithms.

E. Performance Comparison between QB-MUSA and GUSA

In Fig. 7 we simulate 10-minute run of a broadcast system
containing 15 users with transmit correlation matrices gener-
ated the same as above. The BS is equipped with 8 antennas
and the transmit power is fixed at 15 dB. The initial queue
lengths are given by random numbers that follow uniform
distribution U (0, 6) (with unit in Mb). The arrival process
of user k is expressed as

Ak(t) = ωkAm(t), (46)

where ωk is the fractional arrival rate subject to
∑K
k=1 ωk = 1;

A is the ergodic sum arrival rate and m(t) stands for the ran-
dom arrival instance such that m(t) ∈ U (0, 2). We make the
time slot interval equal to 1 second and the bandwidth equal to
1 MHz. The sub-figure (a) demonstrates the simulation results
of A = 8 Mb/s and (b) A = 5 Mb/s. We actually select these
two ergodic sum arrival rates to show two different scenarios
i.e. (a) A is beyond the system transmission ability and (b)

is on the contrary. In the first case, QB-MUSA realize higher
throughput than GUSA, while in the later case both algorithms
are able to finish transmitting all queueing data. Hence, by QB-
MUSA we see an alternative scheduling algorithm that has the
possibility to outperform conventional WSR-based scheduling
algorithms.

VI. CONCLUSION

In this paper, we studied two problems in maximizing the
spectral efficiency of MU-MISO broadcast channels. Each
problem has its own constraints and for each of them we
proposed a user scheduling algorithm named T2-MUSA and
QB-MUSA. In multi-user system, there is a well-known trade-
off between the sum-rate maximization and user fairness.
Compared with conventional user scheduling algorithms, the
merit of T2-MUSA should be seen as the joint advantage in
system throughput and user fairness. Besides, we discussed the
optimality of T2-MUSA over higher tier algorithms, and found
an analytical expression of the lower bound of the ergodic
average group-rate when the dominant eigenvalues of arbitrary
users are uniformly distributed. QB-MUSA is designed to deal
with the queue stability problem which actually is converted
to a throughput maximization problem in our study. The result
shows that QB-MUSA is possible to gain higher throughput
especially in the case that the ergodic sum arrival rate is larger
than the system capacity.

APPENDIX A
PROOF OF THEOREM 1

Suppose not: the optimal fair schedule S? is composed of
both SU and TU groups.

Without loss of generality, we denote one of the users in
SU groups as user k and one of the users in TU groups as
user j. Assume there are tk1 SU groups and tk2 TU groups
containing user k and the similar goes for tj1 and tj2, where
tk1, tj2 ∈ Z+ and tk2, tj1 ∈ N. Since we have S? ∈ SFF , we
can write

tk1 + tk2 = tj1 + tj2. (47)

Also, because of S ∈ SEF , each user consumes the same
energy i.e.

tk1P + tk2
P

2
= tj1P + tj2

P

2
. (48)

Combining (47) and (48), we can get{
tk1 = tj1 = t1

tk2 = tj2 = t2,
(49)

which means the number of SU groups that contains user k
is equal to the number of SU groups that contains user j and
so happens to the number of TU groups. Since k could stand
for any user in SU groups and j could represent any user in
TU groups, it holds true that every user is allocated to t1 SU
groups and t2 TU groups. Therefore S? can be separated into
two set,

S? = {S1, S2} (50)

where S1 only consists of SU groups and S2 only consists of
TU groups. Due to the fact t1, t2 ∈ Z+, S1 and S2 are two
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complete user schedules. Assume the sizes of S1 and S2 are
respectively L1 and L2 and the average group rates are R̄S1

and R̄S2 , then the sum rate of S1 and S2 should be equal to
the sum rate of S?,

L1R̄S1
+ L2R̄S2

= (L1 + L2)R̄S? (51)

i.e.
L1

L2

(
R̄S? − R̄S1

)
= −

(
R̄S? − R̄S2

)
. (52)

• If R̄S1 = R̄S2 , by (52) we can deduce R̄S1 = R̄S2 =
R̄S? which contradicts with that S? is optimal, since S1

and S2 achieve equivalent average group rate with shorter
lengths.

• If R̄S1
6= R̄S2

, by (52) we have either R̄S1
> R̄S?

or R̄S2
> R̄S? which also contradicts with that S? is

optimal.
Therefore, we complete the proof.

APPENDIX B
PROOF OF LEMMA 2

Suppose not: there are only n independent ‘1’s in B where
n is smaller than K.

According to Remark 2 we can find n lines that contain all
‘1’s in B. Without loss of generality, we assume these lines
cover the {r1, r2, · · · , rnr

}th rows and the {c1, c2, · · · , cnc
}th

columns with nr + nc = n. Then we make two sets of lines
by

IR =

{r1, r2, · · · , rnr , 2r1, 2r2, · · · , 2rnr , · · · ,mr1,mr2, · · · ,mrnr︸ ︷︷ ︸
mnr rows

},

(53)
IC =
{c1, c2, · · · , cnc , 2c1, 2c2, · · · , 2cnc , · · · ,mc1,mc2, · · · ,mcnc︸ ︷︷ ︸

mnc columns

}.

(54)
Therefore, we have m(nr + nc) = mn lines in total and we
can use these mn lines to cover all the ‘1’ elements in Am.
Specifically, if a ‘1’ element is covered by the rthi row in B,
then its associated ‘1’ element in Am must be covered by
one of the {ri, 2ri, · · · ,mri}th rows . It means there are only
mn independent ‘1’s in Am which contradicts with that Am

has mK independent ‘1’s. Hence we complete the proof of
Lemma 2.

APPENDIX C
PROOF OF THEOREM 2

We assume S?EFT2 is the optimal tier-2 energy-fair schedule
and S?EFTN is the optimal tier-N energy-fair schedule.
• If N is an even number, according to Corolarry 1, we

can manage to separate S?EFTN as (34),

S?EFTN = {S1
EFT2, S

2
EFT2, · · · , S

N
2

EFT2}. (55)

While, we also know that among all tier-2 energy-fair
schedules, S?EFT2 is the optimal one i.e.

R̄S?
EFT2

≥ R̄Sn
EFT2

, n = 1, 2, · · · , N/2. (56)

In other words, the average group rate of S?EFT2 should
be no less than other tier-2 energy fair schedules and we
consequently have

R̄S?
EFT2

≥ 2

N

N/2∑
n=1

R̄Sn
EFT2

= R̄S?
EFT2m

. (57)

Combining (30) and (57) gives

R̄S?
EFT2

= R̄S?
EFTN

. (58)

• If N is an odd number, considering Lemma 1 and what
we have proved in (58), we can write,

R̄S?
EFT2

= R̄S?
EFT2N

≥ R̄S?
EFTN

(59)

When there are even number of users, we may be able to
find the average group-rate of the tier-1 user schedule S?EFT1

is equal to S?EFT2 (in S?EFT1, each user is allocated to a TU
group, so that the energy consumed by an individual user is
P/2). Only in this case the optimal energy-fair schedule is
S?EFT1, hence we make a condition upon the Theorem 2 i.e.
N ≥ 2.

To sum up, for any tier-N optimal energy-fair schedules,
we proved that the average group-rate of S?EFT2 is no less
than the rest while its length is the shortest. Hence the proof
of Theorem 2 is completed.

APPENDIX D
PROOF OF PROPOSITION 3

Because the user schedule with fully SU groups (24) be-
longs to tier-2 schedules i.e. S?1 ∈ SEFT2, the average group-
rate of S?EFT2 should be inherently no less than S?1 . Suppose
the λ ∈ U(a, b) is the maximum eigenvalue of a single user
K in S?1 , by (7), (8) and (9), we have

R̄S?
1

= E [RK ] = E [h(Pλ)] . (60)

On the other hand we have following two expansions:

lim
x→∞

exp

(
1

x

)
=

∞∑
n=0

1

xnn!
> 1 +

1

x
, (61)

E1

(
1

x

)
= −γ − log

1

x
−
∞∑
n=1

1

nn!

(
− 1

x

)n
>

x→∞

1

x
− 1

4x2
− γ + log x.

(62)

Specifically, (61) is obtained by Taylor expansion at the point
1
x → 0 and (62) is obtained with the help of the asymptotic
expansion of [32, 5.1.11, p. 229]. Then we can write,

E [h (Pλ)] =

∫ b

a

h (Pλ) fΛ(λ)dλ

∗
>

1

P

∫ bP

aP

(
1 +

1

x

)(
1

x
− 1

4x2
− γ + log x

)
1

b− a
dx

=
1

P

(
log2 x

2
+ (x+ 1− γ) log x− (γ + 1)x

)∣∣∣∣bP
aP

(63)
where fΛ(λ) denotes the probability density function of λ and
(∗) is obtained by replacing x = Pλ. Thereby, we obtain the
equations (41) and (42).
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