10 research outputs found

    A novel intramural TGF β 1 hydrogel delivery method to decrease murine abdominal aortic aneurysm and rat aortic pseudoaneurysm formation and progression

    No full text
    Objectives: Aneurysms are generally the result of dilation of all 3 layers of the vessel wall, and pseudoaneurysms are the result of localized extravasation of blood that is contained by surrounding tissue. Since there is still no recommended protocol to decrease aneurysm formation and progression, we hypothesised that intramural delivery of TGF β1 hydrogel can decrease aneurysm and pseudoaneurysm formation and progression. Materials: Male C57BL/6 J mice (12–14 wk), SD rats (200 g) and pig abdominal aortas were used, and hydrogels were fabricated by the interaction of sodium alginate (SA), hyaluronic acid (HA) and CaCO3. Methods: A CaCl2 adventitial incubation model in mice and a decellularized human great saphenous vein patch angioplasty model in rats were used. TGF β1 hydrogel was intramurally delivered after CaCl2 incubation in mice; at day 7, the abdomen in some mice was reopened, and TGF β1 hydrogel was injected intramurally into the aorta. In rats, TGF β1 hydrogel was delivered intramurally after patch angioplasty completion. Tissues were harvested at day 14 and analysed by histology and immunohistochemistry staining. The pig aorta was also intramurally injected with hydrogel. Results: In mice, rhodamine hydrogel was still found between the medium and adventitia at day 14. In the mouse aneurysm model, there was a thicker wall and smaller amount of elastin breaks in the TGF β1 hydrogel-delivered groups both at day 0 and day 7 after CaCl2 incubation, and there were larger numbers of p-smad2- and TAK1-positive cells in the TGF β1 hydrogel-injected groups. In the rat decellularized human saphenous vein patch pseudoaneurysm model, there was a higher incidence of pseudoaneurysm formation when the patch was decellularized using 3% SDS, and delivery of TGF β1 hydrogel could effectively decrease the formation of pseudoaneurysm formation and increase p-smad2 and TAK1 expression. In pig aortas, hydrogels can be delivered between the medium and adventitia easily and successfully. Conclusions: Intramural delivery of TGF β1 hydrogel can effectively decease aneurysm and pseudoaneurysm formation and progression in both mice and rats, and pig aortas can also be successfully intramurally injected with hydrogel. This technique may be a promising drug delivery method and therapeutic choice to decrease aneurysm and pseudoaneurysm formation and progression in the clinic

    In situ visualization of the superior nanomechanical flexibility of individual hydroxyapatite nanobelts

    No full text
    © 2018 The Royal Society of Chemistry. Highly flexible multi-layered hydroxyapatite (HA) nanobelts were successfully grown and compared to nanorods. The nanomechanical behaviour of individual HA nanostructures was visualized using in situ TEM. Compression-induced deformation in HA nanobelts can spontaneously recover at a maximal strain of 99.2%, much larger than the 2.63% failure strain observed for traditional HA nanorods

    DataSheet1_Combining photodynamic therapy and cascade chemotherapy for enhanced tumor cytotoxicity: the role of CTT2P@B nanoparticles.docx

    No full text
    The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm−2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.</p

    Deciphering the causal relationship between blood pressure and regional white matter integrity: A two-sample Mendelian randomization study

    No full text
    Elevated arterial blood pressure (BP) is a common risk factor for cerebrovascular and cardiovascular diseases, but no causal relationship has been established between BP and cerebral white matter (WM) integrity. In this study, we performed a two-sample Mendelian randomization (MR) analysis with individual-level data by defining two nonoverlapping sets of European ancestry individuals (genetics–exposure set: N = 203,111; mean age = 56.71 years, genetics–outcome set: N = 16,156; mean age = 54.61 years) from UK Biobank to evaluate the causal effects of BP on regional WM integrity, measured by fractional anisotropy of diffusion tensor imaging. Two BP traits: systolic and diastolic blood pressure were used as exposures. Genetic variant was carefully selected as instrumental variable (IV) under the MR analysis assumptions. We existing large-scale genome-wide association study summary data for validation. The main method used was a generalized version of inverse-variance weight method while other MR methods were also applied for consistent findings. Two additional MR analyses were performed to exclude the possibility of reverse causality. We found significantly negative causal effects (FDR-adjusted p < .05; every 10 mmHg increase in BP leads to a decrease in FA value by .4% ~ 2%) of BP traits on a union set of 17 WM tracts, including brain regions related to cognitive function and memory. Our study extended the previous findings of association to causation for regional WM integrity, providing insights into the pathological processes of elevated BP that might chronically alter the brain microstructure in different regions.https://doi.org/10.1002/jnr.2520

    Selective Ionic Transport Pathways in Phosphorene

    No full text
    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications

    Direct Visualization of Vesicle Disassembly and Reassembly Using Photocleavable Dendrimers Elucidates Cargo Release Mechanisms

    No full text
    Release of cargo molecules from cell-like nanocarriers can be achieved by chemical perturbations, including changes to pH and redox state and optical modulation of membrane properties. However, little is known about the kinetics or products of vesicle breakdown due to limitations in real-time imaging at nanometer length scales. Using a library of 12 single-single type photocleavable amphiphilic Janus dendrimers, we developed a self-assembling light-responsive dendrimersome vesicle platform. A photocleavable -nitrobenzyl inserted between the hydrophobic and hydrophilic dendrons of amphiphilic Janus dendrimers allowed for photocleavage and disassembly of their supramolecular assemblies. Distinct methods used to self-assemble amphiphilic Janus dendrimers produced either nanometer size small unilamellar vesicles or micron size giant multilamellar and onion-like dendrimersomes. observation of giant photosensitive dendrimersomes confocal microscopy elucidated rapid morphological transitions that accompany vesicle breakdown upon 405 nm laser illumination. Giant dendrimersomes displayed light-induced cleavage, disassembling and reassembling into much smaller vesicles at millisecond time scales. Additionally, photocleavable vesicles demonstrated rapid release of molecular and macromolecular cargos. These results guided our design of multilamellar particles to photorelease surface-attached proteins, photoinduce cargo recruitment, and photoconvert vesicle morphology. Real-time characterization of the breakdown and reassembly of lamellar structures provides insights on partial cargo retention and informs the design of versatile, optically regulated carriers for applications in nanoscience and synthetic biology
    corecore