210 research outputs found
Impact of handgrip exercise intensity on brachial artery flow-mediated dilation.
PURPOSE: Previous studies that have examined the impact of exercise intensity on conduit artery endothelial function have involved large muscle group exercise which induces local and systemic effects. The aim of this study was to examine flow-mediated dilation (FMD) before and after incremental intensities of handgrip exercise (HE), to assess the role of local factors such as blood flow and shear rate on post-exercise brachial artery function. METHODS: Eleven healthy men attended the laboratory on three occasions. Subjects undertook 30 min of handgrip exercise at three intensities (5, 10 or 15 % MVC). Brachial artery FMD, shear and blood flow patterns were examined before, immediately after and 60 min post exercise. RESULTS: Handgrip exercise increased mean and antegrade shear rate (SR) and blood flow (BF) and reduced retrograde SR and BF (all P < 0.01). Exercise intensity was associated with a dose-dependent increase in both mean and antegrade BF and SR (interaction, P < 0.01). Post-hoc tests revealed that, whilst handgrip exercise did not immediately induce post-exercise changes, FMD was significantly higher 60 min post-exercise following the highest exercise intensity (5.9 ± 2.8-10.4 ± 5.8 %, P = 0.01). CONCLUSIONS: Handgrip exercise leads to intensity-and time-dependent changes in conduit artery function, possibly mediated by local increases in shear, with improvement in function evident at 1 h post-exercise when performed at a higher intensity
Muscle size explains low passive skeletal muscle force in heart failure patients.
BACKGROUND: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. METHODS: Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. RESULTS: We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. DISCUSSION: These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening
Impact of commonly prescribed exercise interventions on platelet activation in physically inactive and overweight men.
The exercise paradox infers that, despite the well-established cardioprotective effects of repeated episodic exercise (training), the risk of acute atherothrombotic events may be transiently increased during and soon after an exercise bout. However, the acute impact of different exercise modalities on platelet function has not previously been addressed. We hypothesized that distinct modalities of exercise would have differing effects on in vivo platelet activation and reactivity to agonists which induce monocyte-platelet aggregate (MPA) formation. Eight middle-aged (53.5 ± 1.6 years) male participants took part in four 30 min experimental interventions (aerobic AE, resistance RE, combined aerobic/resistance exercise CARE, or no-exercise NE), in random order. Blood samples were collected before, immediately after, and 1 h after each intervention, and incubated with one of three agonists of physiologically/clinically relevant pathways of platelet activation (thrombin receptor activating peptide-6 TRAP, arachidonic acid AA, and cross-linked collagen-related peptide xCRP). In the presence of AA, TRAP, and xCRP, both RE and CARE evoked increases in MPAs immediately post-exercise (P < 0.01), whereas only AA significantly increased MPAs immediately after AE (P < 0.01). These increases in platelet activation post-exercise were transient, as responses approached pre-exercise levels by 1 h. These are the first data to suggest that exercise involving a resistance component in humans may transiently increase platelet-mediated thrombotic risk more than aerobic modalities
Brachial and Cerebrovascular Functions Are Enhanced in Postmenopausal Women after Ingestion of Chocolate with a High Concentration of Cocoa.
Background: Cocoa contains polyphenols that are thought to be beneficial for vascular health.Objective: We assessed the impact of chocolate containing distinct concentrations of cocoa on cerebrovascular function and cognition.Methods: Using a counterbalanced within-subject design, we compared the acute impact of consumption of energy-matched chocolate containing 80%, 35%, and 0% single-origin cacao on vascular endothelial function, cognition, and cerebrovascular function in 12 healthy postmenopausal women (mean ± SD age: 57.3 ± 5.3 y). Participants attended a familiarization session, followed by 3 experimental trials, each separated by 1 wk. Outcome measures included cerebral blood flow velocity (CBFv) responses, recorded before and during completion of a computerized cognitive assessment battery (CogState); brachial artery flow-mediated dilation (FMD); and hemodynamic responses (heart rate and blood pressure).Results: When CBFv data before and after chocolate intake were compared between conditions through the use of 2-factor ANOVA, an interaction effect (P = 0.003) and main effects for chocolate (P = 0.043) and time (P = 0.001) were evident. Post hoc analysis revealed that both milk chocolate (MC; 35% cocoa; P = 0.02) and dark chocolate (DC; 80% cocoa; P = 0.003) induced significantly lower cerebral blood flow responses during the cognitive tasks, after normalizing for changes in arterial pressure. DC consumption also increased brachial FMD compared with the baseline value before chocolate consumption (P = 0.002), whereas MC and white chocolate (0% cocoa) caused no change (P-interaction between conditions = 0.034).Conclusions: Consumption of chocolate containing high concentrations of cocoa enhanced vascular endothelial function, which was reflected by improvements in FMD. Cognitive function outcomes did not differ between conditions; however, cerebral blood flow responses during these cognitive tasks were lower in those consuming MC and DC. These findings suggest that chocolate containing high concentrations of cocoa may modify the relation between cerebral metabolism and blood flow responses in postmenopausal women. This trial was registered at www.ANZCTR.orgau as ACTRN12616000990426
Consumption of dark chocolate attenuates subsequent food intake compared with milk and white chocolate in postmenopausal women.
BACKGROUND: Chocolate has a reputation for contributing to weight gain due to its high fat, sugar and calorie content. However, the effect of varying concentrations of cocoa in chocolate on energy intake and appetite is not clear. OBJECTIVE: To compare the acute effect of consuming an isocaloric dose of dark, milk and white chocolate on subsequent energy intake, appetite and mood in postmenopausal women. METHODS: Fourteen healthy postmenopausal women (57.6 ± 4.8yr) attended an introductory session followed by three experimental trials performed in a counterbalanced order at a standardised time of day, each separated by one week. Ad libitum energy intake, perceived appetite, mood and appetite-related peptides were assessed in response to consumption of 80% cocoa [dark chocolate], 35% cocoa [milk chocolate] and cocoa butter [white chocolate] (2099 kJ), prepared from a single-origin cacao bean. RESULTS: Ad libitum energy intake was significantly lower following dark (1355 ± 750 kJ) compared with both milk (1693 ± 969 kJ; P = 0.008) and white (1842 ± 756 kJ; P = 0.001) chocolate consumption. Blood glucose and insulin concentrations were transiently elevated in response to white and milk chocolate consumption compared with the dark chocolate (P  0.05). CONCLUSIONS: Dark chocolate attenuates subsequent food intake in postmenopausal women, compared to the impact of milk and white chocolate consumption
Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes
Objective
Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and controls.
Methods
Twenty patients with type 2 diabetes and 10 age- and sex-matched controls performed an 8-week training study involving lower limb-based combined aerobic and resistance exercise training. We examined the SFA to study the local effect of exercise, and also the systemic impact of lower limb-based exercise training on peripheral (i.e. BA) and central (i.e. CA) arteries. Wall thickness (WT), diameter and wall:lumen(W:L)-ratios were examined using automated edge detection of ultrasound images.
Results
Exercise training did not alter SFA or CA diameter in type 2 diabetes or controls (all P > 0.05). BA diameter was increased after training in type 2 diabetes, but not in controls. Exercise training decreased WT and W:L ratio in the SFA and BA, but not in CA in type 2 diabetes. Training did not alter WT or W:L ratio in controls (P > 0.05).
Conclusion
Lower limb-dominant exercise training causes remodelling of peripheral arteries, supplying active and inactive vascular beds, but not central arteries in type 2 diabetes
Differential impact of water immersion on arterial blood flow and shear stress in the carotid and brachial arteries of humans.
Arterial shear stress is a potent stimulus to vascular adaptation in humans. Typically, increases in retrograde shear have been found to acutely impair vascular function while increases in antegrade shear enhance function. We hypothesized that blood flow and shear stress through the brachial and carotid arteries would change in a similar manner in response to water immersion, an intervention which modifies hemodynamics. Nine healthy young male subjects were recruited to undergo controlled water immersion in a standing upright position to the level of the right atrium in 30°C water. Diameters were continuously and simultaneously recorded in the brachial and common carotid arteries along with mean arterial pressure (MAP), cardiac output (CO), and heart rate before, during, and after 10 min of immersion. MAP and CO increased during water immersion (baseline vs. 8-10 min; 80 ± 9 vs. 91 ± 12 mmHg; and 4.8 ± 0.7 vs. 5.1 ± 0.6 L/min, P < 0.01 and P < 0.05, respectively). We observed a differential regulation of flow and shear stress patterns in the brachial and carotid arteries in response to water immersion; brachial conductance decreased markedly in response to immersion (1.25 ± 0.56 vs. 0.57 ± 0.30 mL.min/mmHg, P < 0.05), whereas it was unaltered in the carotid artery (5.82 ± 2.14 vs. 5.60 ± 1.59). Our findings indicate that adaptations to systemic stimuli and arterial adaptation may be vessel bed specific in humans, highlighting the need to assess multiple vascular sites in future studies
Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients
Introduction
Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT.
Methods
Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)).
Results
Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.).
Conclusion
Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III
Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies
Background: The athlete’s heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. The effect of exercise training on left ventricular (LV) cardiac strain and twist mechanics are equivocal, and no meta-analysis has been conducted to date.
 
Objective: The objective of this systematic review and meta-analysis was to review the literature pertaining to the effect of different forms of athletic training on cardiac strain and twist mechanics and determine the influence of traditional and contemporary sporting classifications on cardiac strain and twist mechanics.
Methods: We searched PubMed/MEDLINE, Web of Science, and ScienceDirect for controlled studies of aged-matched male participants aged 18–45 years that used two-dimensional (2D) speckle tracking with a defined athlete sporting discipline and a control group not engaged in training programs. Data were extracted independently by two reviewers. Random-effects meta-analyses, subgroup analyses, and meta-regressions were conducted.
 
Results: Our review included 13 studies with 945 participants (controls n = 355; athletes n = 590). Meta-analyses showed no athlete–control differences in LV strain or twist mechanics. However, moderator analyses showed greater LV twist in high-static low-dynamic athletes (d = –0.76, 95% confidence interval [CI] –1.32 to –0.20; p < 0.01) than in controls. Peak untwisting velocity (PUV) was greater in high-static low-dynamic athletes (d = –0.43, 95% CI –0.84 to –0.03; p < 0.05) but less than controls in high-static high-dynamic athletes (d = 0.79, 95% CI 0.002–1.58; p = 0.05). Elite endurance athletes had significantly less twist and apical rotation than controls (d = 0.68, 95% CI 0.19–1.16, p < 0.01; d = 0.64, 95% CI 0.27–1.00, p = 0.001, respectively) but no differences in basal rotation. Meta-regressions showed LV mass index was positively associated with global longitudinal (b = 0.01, 95% CI 0.002–0.02; p < 0.05), whereas systolic blood pressure was negatively associated with PUV (b = –0.06, 95% CI –0.13 to –0.001; p = 0.05).
 
Conclusion: Echocardiographic 2D speckle tracking can identify subtle physiological differences in adaptations to cardiac strain and twist mechanics between athletes and healthy controls. Differences in speckle tracking echocardiography-derived parameters can be identified using suitable sporting categorizations
FGFR2 amplification has prognostic significance in gastric cancer: results from a large international multicentre study
Background: In preclinical gastric cancer (GC) models, FGFR2 amplification was associated with increased tumour cell proliferation and survival, and drugs targeting this pathway are now in clinical trials. Methods: FGFR2 FISH was performed on 961 GCs from the United Kingdom, China and Korea, and the relationship with clinicopathological data and overlap with HER2 amplification were analysed. Results: The prevalence of FGFR2 amplification was similar between the three cohorts (UK 7.4%, China 4.6% and Korea 4.2%), and intratumoral heterogeneity was observed in 24% of FGFR2 amplified cases. FGFR2 amplification was associated with lymph node metastases (Po0.0001). FGFR2 amplification and polysomy were associated with poor overall survival (OS) in the Korean (OS: 1.83 vs 6.17 years, P ¼ 0.0073) and UK (OS: 0.45 vs 1.9 years, Po0.0001) cohorts, and FGFR2 amplification was an independent marker of poor survival in the UK cohort (P ¼ 0.0002). Co-amplification of FGFR2 and HER2 was rare, and when high-level amplifications did co-occur these were detected in distinct areas of the tumour. Conclusion: A similar incidence of FGFR2 amplification was found in Asian and UK GCs and was associated with lymphatic invasion and poor prognosis. This study also shows that HER2 and FGFR2 amplifications are mostly exclusive
- …
