144 research outputs found

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

    Get PDF
    Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Acute Migraine Therapy: New Drugs and New Approaches

    Get PDF
    The conceptual shift of our understanding of migraine from a vascular disorder to a brain disorder has dramatically altered the approach to the development of new medicines in the field. Current pharmacologic treatments of acute migraine consist of nonspecific and relatively specific agents. Migraine-specific drugs comprise two classes, the ergot alkaloid derivatives and the triptans, serotonin 5-HT1B/1D receptor agonists. The ergots, consisting of ergotamine and dihydroergotamine (DHE), are the oldest specific antimigraine drugs available and are considered relatively safe and effective. Ergotamine has been used less extensively because of its adverse effects; DHE is better tolerated. The triptan era, beginning in the 1990s, was a period of considerable change, although these medicines retained vasoconstrictor actions. New methods of delivering older drugs include orally inhaled DHE and the transdermal formulation of sumatriptan, both currently under study. Novel medicines being developed are targeted at neural sites of action. Serotonin 5-HT1F receptor agonists have proven effective in phase II studies and have no vascular actions. Calcitonin gene-related peptide (CGRP) receptor antagonists are another promising nonvasoconstrictor approach to treating acute migraine. Olcegepant (BIBN4096BS) and telcagepant (MK-0974) have been shown to be safe and effective in phase I, II, and (for telcagepant) phase III clinical trials. Other targets under investigation include glutamate (AMPA/kainate), TRPV1, prostanoid EP4, and nitric oxide synthase. With new neural targets and the potential for therapeutic advances, the next era of antimigraine medications is near

    Protocol for Translabial 3D-Ultrasonography for diagnosing levator defects (TRUDIL): a multicentre cohort study for estimating the diagnostic accuracy of translabial 3D-ultrasonography of the pelvic floor as compared to MR imaging

    Get PDF
    Contains fulltext : 96237.pdf (publisher's version ) (Open Access)BACKGROUND: Pelvic organ prolapse (POP) is a condition affecting more than half of the women above age 40. The estimated lifetime risk of needing surgical management for POP is 11%. In patients undergoing POP surgery of the anterior vaginal wall, the re-operation rate is 30%. The recurrence risk is especially high in women with a levator ani defect. Such defect is present if there is a partially or completely detachment of the levator ani from the inferior ramus of the symphysis. Detecting levator ani defects is relevant for counseling, and probably also for treatment. Levator ani defects can be imaged with MRI and also with Translabial 3D ultrasonography of the pelvic floor. The primary aim of this study is to assess the diagnostic accuracy of translabial 3D ultrasonography for diagnosing levator defects in women with POP with Magnetic Resonance Imaging as the reference standard. Secondary goals of this study include quantification of the inter-observer agreement about levator ani defects and determining the association between levator defects and recurrent POP after anterior repair. In addition, the cost-effectiveness of adding translabial ultrasonography to the diagnostic work-up in patients with POP will be estimated in a decision analytic model. METHODS/DESIGN: A multicentre cohort study will be performed in nine Dutch hospitals. 140 consecutive women with a POPQ stage 2 or more anterior vaginal wall prolapse, who are indicated for anterior colporapphy will be included. Patients undergoing additional prolapse procedures will also be included. Prior to surgery, patients will undergo MR imaging and translabial 3D ultrasound examination of the pelvic floor. Patients will be asked to complete validated disease specific quality of life questionnaires before surgery and at six and twelve months after surgery. Pelvic examination will be performed at the same time points. Assuming a sensitivity and specificity of 90% of 3D ultrasound for diagnosing levator defects in a population of 120 women with POP, with a prior probability of levator ani defects of 40%, we will be able to estimate predictive values with good accuracy (i.e. confidence limits of at most 10% below or above the point estimates of positive and negative predictive values).Anticipating 3% unclassifiable diagnostic images because of technical reasons, and a further safety margin of 10% we plan to recruit 140 patients. TRIAL REGISTRATION: Nederlands trial register NTR2220

    Solvent accessible surface area approximations for rapid and accurate protein structure prediction

    Get PDF
    The burial of hydrophobic amino acids in the protein core is a driving force in protein folding. The extent to which an amino acid interacts with the solvent and the protein core is naturally proportional to the surface area exposed to these environments. However, an accurate calculation of the solvent-accessible surface area (SASA), a geometric measure of this exposure, is numerically demanding as it is not pair-wise decomposable. Furthermore, it depends on a full-atom representation of the molecule. This manuscript introduces a series of four SASA approximations of increasing computational complexity and accuracy as well as knowledge-based environment free energy potentials based on these SASA approximations. Their ability to distinguish correctly from incorrectly folded protein models is assessed to balance speed and accuracy for protein structure prediction. We find the newly developed “Neighbor Vector” algorithm provides the most optimal balance of accurate yet rapid exposure measures

    Regulation of Cyclooxygenase-2 Expression by Heat: A Novel Aspect of Heat Shock Factor 1 Function in Human Cells

    Get PDF
    The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position −2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function

    Team players against headache: multidisciplinary treatment of primary headaches and medication overuse headache

    Get PDF
    Multidisciplinary approaches are gaining acceptance in headache treatment. However, there is a lack of scientific data about the efficacy of various strategies and their combinations offered by physiotherapists, physicians, psychologists and headache nurses. Therefore, an international platform for more intense collaboration between these professions and between headache centers is needed. Our aims were to establish closer collaboration and an interchange of knowledge between headache care providers and different disciplines. A scientific session focusing on multidisciplinary headache management was organised at The European Headache and Migraine Trust International Congress (EHMTIC) 2010 in Nice. A summary of the contributions and the discussion is presented. It was concluded that effective multidisciplinary headache treatment can reduce headache frequency and burden of disease, as well as the risk for medication overuse headache. The significant value of physiotherapy, education in headache schools, and implementation of strategies of cognitive behavioural therapy was highlighted and the way paved for future studies and international collaboration

    Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability

    Get PDF
    Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms

    Preclinical mouse models for BRCA1-associated breast cancer

    Get PDF
    A substantial part of all hereditary breast cancer cases is caused by BRCA1 germline mutations. In this review, we will discuss the insights into BRCA1 functions that we obtained from mouse models with conventional and conditional mutations in Brca1. The most advanced models closely resemble human BRCA1-related breast cancer and may therefore be useful for addressing clinically relevant questions
    corecore