29 research outputs found
CAVASS: A Computer-Assisted Visualization and Analysis Software System
The Medical Image Processing Group at the University of Pennsylvania has been developing (and distributing with source code) medical image analysis and visualization software systems for a long period of time. Our most recent system, 3DVIEWNIX, was first released in 1993. Since that time, a number of significant advancements have taken place with regard to computer platforms and operating systems, networking capability, the rise of parallel processing standards, and the development of open-source toolkits. The development of CAVASS by our group is the next generation of 3DVIEWNIX. CAVASS will be freely available and open source, and it is integrated with toolkits such as Insight Toolkit and Visualization Toolkit. CAVASS runs on Windows, Unix, Linux, and Mac but shares a single code base. Rather than requiring expensive multiprocessor systems, it seamlessly provides for parallel processing via inexpensive clusters of work stations for more time-consuming algorithms. Most importantly, CAVASS is directed at the visualization, processing, and analysis of 3-dimensional and higher-dimensional medical imagery, so support for digital imaging and communication in medicine data and the efficient implementation of algorithms is given paramount importance
Comprehensive Brain MRI Segmentation in High Risk Preterm Newborns
Most extremely preterm newborns exhibit cerebral atrophy/growth disturbances and white matter signal abnormalities on MRI at term-equivalent age. MRI brain volumes could serve as biomarkers for evaluating the effects of neonatal intensive care and predicting neurodevelopmental outcomes. This requires detailed, accurate, and reliable brain MRI segmentation methods. We describe our efforts to develop such methods in high risk newborns using a combination of manual and automated segmentation tools. After intensive efforts to accurately define structural boundaries, two trained raters independently performed manual segmentation of nine subcortical structures using axial T2-weighted MRI scans from 20 randomly selected extremely preterm infants. All scans were re-segmented by both raters to assess reliability. High intra-rater reliability was achieved, as assessed by repeatability and intra-class correlation coefficients (ICC range: 0.97 to 0.99) for all manually segmented regions. Inter-rater reliability was slightly lower (ICC range: 0.93 to 0.99). A semi-automated segmentation approach was developed that combined the parametric strengths of the Hidden Markov Random Field Expectation Maximization algorithm with non-parametric Parzen window classifier resulting in accurate white matter, gray matter, and CSF segmentation. Final manual correction of misclassification errors improved accuracy (similarity index range: 0.87 to 0.89) and facilitated objective quantification of white matter signal abnormalities. The semi-automated and manual methods were seamlessly integrated to generate full brain segmentation within two hours. This comprehensive approach can facilitate the evaluation of large cohorts to rigorously evaluate the utility of regional brain volumes as biomarkers of neonatal care and surrogate endpoints for neurodevelopmental outcomes
Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically-driven quantitative biomarkers
Existing Quantitative Imaging Biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials
Fuzzy-connected 3D image segmentation at interactive speeds
Image segmentation techniques using fuzzy connectedness principles hake shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem with these algorithms has been their excessive computational requirements. In an attempt to substantially speed them up. in the present paper, we study systematically a host of 18 'optimal' graph search algorithms. Extensive testing of these algorithms on a variety of 3D medical images taken from large ongoing applications demonstrates that a 20 1000-fold improvement over current speeds is achievable with a combination of algorithms and last modern PCs. Utilizing efficient algorithms and careful selection of implementations can speed up the computation of fuzzy connectedness values by a factor of 16 29 (on the same hardware), as compared to the implementation previously used in our applications utilizing fuzzy object segmentation. The optimality of an algorithm depends on the input data as well as on the choice of the fuzzy affinity relation. The running time is reduced considerably (by a factor up to 34 for brain MR and even more for bone CT), when the algorithms make use of predetermined thresholds for the fuzz), objects. The reliable recognition (assisted by human operators) and the accurate, efficient. and sophisticated delineation (automatically performed by the computer) can be effectively incorporated into a single interactive process. If images having intensities kith tissue-Specific meaning (such Lis CT or standardized MR images) are utilized. most of the parameters for the segmentation method can be fixed once for all. all, intermediate data (feature and fuzzy affinity values for the hole scene) can be computed before the user interaction is needed and the user can be provided kith more information at the little of interaction. (C) 2003 Elsevier Science (USA). All rights reserved.64525928
Unsupervised MRI Homogenization: Application to Pediatric Anterior Visual Pathway Segmentation
Deep learning strategies have become ubiquitous optimization tools for medical image analysis. With the appropriate amount of data, these approaches outperform classic methodologies in a variety of image processing tasks. However, rare diseases and pediatric imaging often lack extensive data. Specially, MRI are uncommon because they require sedation in young children. Moreover, the lack of standardization in MRI protocols introduces a strong variability between different datasets. In this paper, we present a general deep learning architecture for MRI homogenization that also provides the segmentation map of an anatomical region of interest. Homogenization is achieved using an unsupervised architecture based on variational autoencoder with cycle generative adversarial networks, which learns a common space (i.e. a representation of the optimal imaging protocol) using an unpaired image-to-image translation network. The segmentation is simultaneously generated by a supervised learning strategy. We evaluated our method segmenting the challenging anterior visual pathway using three brain T1-weighted MRI datasets (variable protocols and vendors). Our method significantly outperformed a non-homogenized multi-protocol U-Net