118 research outputs found

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Stage-Specific Effects of Candidate Heterochronic Genes on Variation in Developmental Time along an Altitudinal Cline of Drosophila melanogaster

    Get PDF
    Background: Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect variation in developmental time in natural populations. Methodology/Principal Findings: Here, we constructed second chromosome substitution lines from natural populations of Drosophila melanogaster from an altitudinal cline, and measured egg-adult development time for each line. We found not only a large amount of genetic variation for developmental time, but also positive associations of the development time with thermal amplitude and altitude. We performed genetic complementation tests using substitution lines with the longest and shortest developmental times and heterochronic mutations. We identified segregating variation for neurogenic and metabolic genes that largely affected the duration of the larval stages but had no impact on the timing of metamorphosis. Conclusions/Significance: Altitudinal clinal variation in developmental time for natural chromosome substitution lines provides a unique opportunity to dissect the response of heterochronic genes to environmental gradients. Ontogenetic stage-specific variation in invected, mastermind, cricklet and CG14591 may affect natural variation in development time an

    Costs of Reproduction and Terminal Investment by Females in a Semelparous Marsupial

    Get PDF
    Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20–40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females

    Demographic responses of Daphnia magna fed transgenic Bt-maize

    Get PDF
    The food/feed quality of a variety of genetically modified (GM) maize expressing Cry1Ab Bt-toxin was tested over the life-cycle of Daphnia magna, an arthropod commonly used as model organism in ecotoxicological studies. Demographic responses were compared between animals fed GM or unmodified (UM) near isogenic maize, with and without the addition of predator smell. Age-specific data on survival and birth rates were integrated and analysed using life tables and Leslie matrices. Survival, fecundity and population growth rate (PGR) data generally disfavoured transgenic Bt-maize as feed for D. magna compared to animals fed the unmodified (UM) near isogenic line of maize. Decomposition of age-specific effects revealed that the most important contributions to a reduced PGR in the GM-fed group came from both fecundity and survival differences early in life. We conclude that juvenile and young adult stages are the most sensitive experimental units and should be prioritized in future research. These stages are often omitted in toxicological/ecotoxicological studies and in feeding trials

    Ejaculate Economics: Testing the Effects of Male Sexual History on the Trade-Off between Sperm and Immune Function in Australian Crickets

    Get PDF
    Trade-offs between investment into male sexual traits and immune function provide the foundation for some of the most prominent models of sexual selection. Post-copulatory sexual selection on the male ejaculate is intense, and therefore trade-offs should occur between investment into the ejaculate and the immune system. Examples of such trade-offs exist, including that between sperm quality and immunity in the Australian cricket, Teleogryllus oceanicus. Here, we explore the dynamics of this trade-off, examining the effects that increased levels of sexual interaction have on the viability of a male's sperm across time, and the concomitant effects on immune function. Males were assigned to a treatment, whereby they cohabited with females that were sexually immature, sexually mature but incapable of copulation, or sexually mature and capable of copulation. Sperm viability of each male was then assessed at two time points: six and 13 days into the treatment, and immune function at day 13. Sperm viability decreased across the time points, but only for males exposed to treatment classes involving sexually mature females. This decrease was similar in magnitude across both sexually mature classes, indicating that costs to the expression of high sperm viability are incurred largely through levels of pre-copulatory investment. Males exposed to immature females produced sperm of low viability at both time points. Although we confirmed a weak negative association between sperm viability and lytic activity (a measure of immune response to bacterial infection) at day 13, this relationship was not altered across the mating treatment. Our results highlight that sperm viability is a labile trait, costly to produce, and subject to strategic allocation in these crickets

    Multiway modeling and analysis in stem cell systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells.</p> <p>Results</p> <p>We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate.</p> <p>Conclusion</p> <p>Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.</p

    Time in a Bottle: The Evolutionary Fate of Species Discrimination in Sibling Drosophila Species

    Get PDF
    Disadvantageous hybridization favors the evolution of prezygotic isolating behaviors, generating a geographic pattern of interspecific mate discrimination where members of different species drawn from sympatric populations exhibit stronger preference for members of their own species than do individuals drawn from allopatric populations. Geographic shifts in species' boundaries can relax local selection against hybridization; under such scenarios the fate of enhanced species preference is unknown. Lineages established from populations in the region of sympatry that have been maintained as single-species laboratory cultures represent cases where allopatry has been produced experimentally. Using such cultures dating from the 1950s, we assess how Drosophila pseudoobscura and D. persimilis mate preferences respond to relaxed natural selection against hybridization. We found that the propensity to hybridize generally declines with increasing time in experimental allopatry, suggesting that maintaining enhanced preference for conspecifics may be costly. However, our data also suggest a strong role for drift in determining mating preferences once secondary allopatry has been established. Finally, we discuss the interplay between populations in establishing the presence or absence of patterns consistent with reinforcement

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia)

    Get PDF
    Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long- lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life- stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalco´ llar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999–2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.560.33SE fledglings/year at 3-yr old vs. 1.3860.31SE at 6–7 yr old; developmentally exposed females: 1.560.30SE fledglings/year at 3-yr old vs. 0.8660.25SE at 6– 7 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios.Peer reviewe
    corecore