168 research outputs found

    Diversification of U.S. medical schools via affirmative action implementation

    Get PDF
    BACKGROUND: The diversification of medical school student and faculty bodies via race-conscious affirmative action policy is a societal and legal option for the U.S. Supreme Court has recently ruled its use constitutional. This paper investigates the implications of affirmative action, particularly race-conscious compared to race-blind admissions policy; explains how alternative programs are generally impractical; and provides a brief review of the history and legality of affirmative action in the United States. DISCUSSION: Selection based solely on academic qualifications such as GPA and MCAT scores does not achieve racial and ethnic diversity in medical school, nor does it adequately predict success as practicing physicians. However, race-conscious preference yields greater practice in underserved and often minority populations, furthers our biomedical research progression, augments health care for minority patients, and fosters an exceptional medical school environment where students are better able to serve an increasingly multicultural society. SUMMARY: The implementation of race-conscious affirmative action results in diversity in medicine. Such diversity has shown increased medical practice in underserved areas, thereby providing better health care for the American people

    Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs

    Get PDF
    miRNAs have been found to repress gene expression at posttranscriptional level in cells. Studies have shown that expression of miRNAs is tissue-specific and developmental-stage-specific. The mechanism behind this could be explained by miRNA pathways. In this study, totally 54 miRNAs were analysed in 7 matched human foetal and adult organs (brain, colon, heart, kidney, liver, lung and spleen) using real-time PCR. Quantitative analysis showed that a big proportion of the 54 miRNAs have higher general expression in the organs of the foetal period than the adult period, with the exception of the heart. The miRNA gene promoter methylation level in the adult stages was higher than in the foetal stages. Moreover, there is a high general expression level of several miRNAs in both stages of brain, kidney, liver, lung and spleen, but not seen in colon and heart. Our results indicate that the miRNAs may play a bigger role in the foetal stage than the adult stage of brain, colon, kidney, liver, lung and spleen. The majority of the miRNAs analysed may play an important role in the growth and development of brain, kidney, liver, lung and spleen. However, a minority of the miRNAs may be functional in colon and heart

    Identification and Characterization of Novel MicroRNAs from Schistosoma japonicum

    Get PDF
    Background: Schistosomiasis japonica remains a major public health problem in China. Its pathogen, Schistosoma japonicum has a complex life cycle and a unique repertoire of genes expressed at different life cycle stages. Exploring schistosome gene regulation will yield the best prospects for new drug targets and vaccine candidates. MicroRNAs (miRNAs) are a highly conserved class of noncoding RNA that control many biological processes by sequence-specific inhibition of gene expression. Although a large number of miRNAs have been identified from plants to mammals, it remains no experimental proof whether schistosome exist miRNAs. Methodology and Results: We have identified novel miRNAs from Schistosoma japonicum by cloning and sequencing a small (18–26 nt) RNA cDNA library from the adult worms. Five novel miRNAs were identified from 227 cloned RNA sequences and verified by Northern blot. Alignments of the miRNAs with corresponding family members indicated that four of them belong to a metazoan miRNA family: let-7, miR-71, bantam and miR-125. The fifth potentially new (non conserved) miRNA appears to belong to a previously undescribed family in the genus Schistosome. The novel miRNAs were designated as sja-let-7, sja-miR-71, sja-bantam, sja-miR-125 and sja-miR-new1, respectively. Expression of sja-let-7, sja-miR-71 and sjabantam were analyzed in six stages of the life cycle, i.e. egg, miracidium, sporocyst, cercaria, schistosomulum, and adult worm, by a modified stem-loop reverse transcribed polymerase chain reaction (RT-PCR) method developed in ou

    Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus)

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching) of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder

    A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease

    Get PDF
    Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to identify further genetic variants that contribute to Alzheimer’s pathology

    The mir-51 Family of microRNAs Functions in Diverse Regulatory Pathways in Caenorhabditis elegans

    Get PDF
    The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans

    Structure-Function Study of Mammalian Munc18-1 and C. elegans UNC-18 Implicates Domain 3b in the Regulation of Exocytosis

    Get PDF
    Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding

    Psychophysics with children: Investigating the effects of attentional lapses on threshold estimates

    Get PDF
    When assessing the perceptual abilities of children, researchers tend to use psychophysical techniques designed for use with adults. However, children’s poorer attentiveness might bias the threshold estimates obtained by these methods. Here, we obtained speed discrimination threshold estimates in 6- to 7-year-old children in UK Key Stage 1 (KS1), 7- to 9-year-old children in Key Stage 2 (KS2), and adults using three psychophysical procedures: QUEST, a 1-up 2-down Levitt staircase, and Method of Constant Stimuli (MCS). We estimated inattentiveness using responses to “easy” catch trials. As expected, children had higher threshold estimates and made more errors on catch trials than adults. Lower threshold estimates were obtained from psychometric functions fit to the data in the QUEST condition than the MCS and Levitt staircases, and the threshold estimates obtained when fitting a psychometric function to the QUEST data were also lower than when using the QUEST mode. This suggests that threshold estimates cannot be compared directly across methods. Differences between the procedures did not vary significantly with age group. Simulations indicated that inattentiveness biased threshold estimates particularly when threshold estimates were computed as the QUEST mode or the average of staircase reversals. In contrast, thresholds estimated by post-hoc psychometric function fitting were less biased by attentional lapses. Our results suggest that some psychophysical methods are more robust to attentiveness, which has important implications for assessing the perception of children and clinical groups

    Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach

    Get PDF
    MicroRNAs (miRNAs) are short (∼22 nucleotides) regulatory RNAs that can modulate gene expression and are aberrantly expressed in many diseases including cancer. Previous studies have shown that miRNAs inhibit the translation and facilitate the degradation of their targeted messenger RNAs (mRNAs) making them attractive candidates for use in cancer therapy. However, the potential clinical utility of miRNAs in cancer therapy rests heavily upon our ability to understand and accurately predict the consequences of fluctuations in levels of miRNAs within the context of complex tumor cells. To evaluate the predictive power of current models, levels of miRNAs and their targeted mRNAs were measured in laser captured micro-dissected (LCM) ovarian cancer epithelial cells (CEPI) and compared with levels present in ovarian surface epithelial cells (OSE). We found that the predicted inverse correlation between changes in levels of miRNAs and levels of their mRNA targets held for only ∼11% of predicted target mRNAs. We demonstrate that this low inverse correlation between changes in levels of miRNAs and their target mRNAs in vivo is not merely an artifact of inaccurate miRNA target predictions but the likely consequence of indirect cellular processes that modulate the regulatory effects of miRNAs in vivo. Our findings underscore the complexities of miRNA-mediated regulation in vivo and the necessity of understanding the basis of these complexities in cancer cells before the therapeutic potential of miRNAs can be fully realized
    corecore