72 research outputs found

    Spin-orbit coupling suppression and singlet-state blocking of spin-triplet Cooper pairs

    Get PDF
    An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states

    Functional Characteristics of a Highly Specific Integrase Encoded by an LTR-Retrotransposon

    Get PDF
    Background: The retroviral Integrase protein catalyzes the insertion of linear viral DNA into host cell DNA. Although different retroviruses have been shown to target distinctive chromosomal regions, few of them display a site-specific integration. ZAM, a retroelement from Drosophila melanogaster very similar in structure and replication cycle to mammalian retroviruses is highly site-specific. Indeed, ZAM copies target the genomic 59-CGCGCg-39 consensus-sequences. To enlighten the determinants of this high integration specificity, we investigated the functional properties of its integrase protein denoted ZAM-IN. Principal Findings: Here we show that ZAM-IN displays the property to nick DNA molecules in vitro. This endonuclease activity targets specific sequences that are present in a 388 bp fragment taken from the white locus and known to be a genomic ZAM integration site in vivo. Furthermore, ZAM-IN displays the unusual property to directly bind specific genomic DNA sequences. Two specific and independent sites are recognized within the 388 bp fragment of the white locus: the CGCGCg sequence and a closely apposed site different in sequence. Conclusion: This study strongly argues that the intrinsic properties of ZAM-IN, ie its binding properties and its endonuclease activity, play an important part in ZAM integration specificity. Its ability to select two binding sites and to nick the DNA molecule reminds the strategy used by some site-specific recombination enzymes and forms the basis for site-specifi

    Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling

    Get PDF
    Among neurobiological mechanisms underlying antidepressant properties of ketamine, structural remodeling of prefrontal and hippocampal neurons has been proposed as critical. The suggested mechanism involves downstream activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which trigger mammalian target of rapamycin (mTOR)-dependent structural plasticity via brain-derived neurotrophic factor (BDNF) and protein neo-synthesis. We evaluated whether ketamine elicits similar molecular events in dopaminergic (DA) neurons, known to be affected in mood disorders, using a novel, translational strategy that involved mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. Sixty minutes exposure to ketamine elicited concentration-dependent increases of dendritic arborization and soma size in both mouse and human cultures as measured 72 hours after application. These structural effects were blocked by mTOR complex/signaling inhibitors like rapamycin. Direct evidence of mTOR activation by ketamine was revealed by its induction of p70S6 kinase. All effects of ketamine were abolished by AMPA receptor antagonists and mimicked by the AMPA-positive allosteric modulator CX614. Inhibition of BDNF signaling prevented induction of structural plasticity by ketamine or CX614. Furthermore, the actions of ketamine required functionally intact dopamine D3 receptors (D3R), as its effects were abolished by selective D3R antagonists and absent in D3R knockout preparations. Finally, the ketamine metabolite (2R,6R)-hydroxynorketamine mimicked ketamine effects at sub-micromolar concentrations. These data indicate that ketamine elicits structural plasticity by recruitment of AMPAR, mTOR and BDNF signaling in both mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. These observations are of likely relevance to the influence of ketamine upon mood and its other functional actions in vivo.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.241

    Safety of aromatase inhibitors in the adjuvant setting

    Get PDF
    The third-generation aromatase inhibitors (AIs) letrozole, anastrozole, and exemestane are replacing tamoxifen as adjuvant therapy in most postmenopausal women with early breast cancer. Although AIs have demonstrated superior efficacy and better overall safety compared with tamoxifen in randomized controlled trials, they may not provide the cardioprotective effects of tamoxifen, and bone loss may be a concern with their long-term adjuvant use. Patients require regular bone mineral density monitoring, and prophylactic bisphosphonates are being evaluated to determine whether they may protect long-term bone health. AIs decrease the risks of thromboembolic and cerebrovascular events compared with tamoxifen, and the overall rate of cardiovascular events in patients treated with AIs is within the range seen in age-matched, non-breast-cancer populations. AIs are also associated with a lower incidence of endometrial cancer and fewer vaginal bleeding/discharge events than tamoxifen. Compared with tamoxifen, the incidence of hot flashes is lower with anastrozole and letrozole but may be higher with exemestane. Generally, adverse events with AIs are predictable and manageable, whereas tamoxifen may be associated with life-threatening events in a minority of patients. Overall, the benefits of AIs over tamoxifen are achieved without compromising overall quality of life
    corecore