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Abstract

Amongst neurobiological mechanisms underlying antidepressant properties of
ketamine, structural remodeling of prefrontal and hippocampal neurons has been
proposed as critical. The suggested molecular mechanism involves downstream
activation of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors which trigger mammalian target of rapamycin (mTOR)-dependent structural
plasticity via Brain Derived Neurotrophic Factor (BDNF) and protein neo-synthesis.
We evaluated whether ketamine elicits similar molecular events in dopaminergic
(DA) neurons, known to be affected in mood disorders, using a novel, translational
strategy that involved mouse mesencephalic and human induced pluripotent stem cells
(iPSCs) derived DA neurons. Sixty minutes exposure to ketamine -elicited
concentration-dependent increases of dendritic arborisation and soma size in both
mouse and human cultures as measured 72 hours after application. These structural
effects were blocked by the mTOR complex/signaling inhibitors like rapamycin.
Direct evidence of mTOR activation by ketamine was revealed by its induction of
p70S6 kinase. All effects of ketamine were abolished by AMPA receptor antagonists
and mimicked by the AMPA positive allosteric modulator CX614. Inhibition of
BDNF signaling prevented induction of structural plasticity by ketamine or CX614.
Furthermore, the actions of ketamine required functionally-intact dopamine D3
receptors (D3R), since its effects were abolished by selective D3R antagonists and
absent in D3R knockout preparations. Finally, the ketamine metabolite 2R,6R-
hydroxynorketamine mimicked ketamine effects at sub-micromolar concentrations.
These data indicate that ketamine elicits structural plasticity in DA neurons by

recruitment of AMPAR, mTOR and BDNF signaling in both mouse mesencephalic



and human iPSC-derived DA neurons, observations of likely relevance to its influence

upon mood and its other functional actions in vivo.

Introduction

Ketamine is a dissociative general anaesthetic that acts as a non-competitive
antagonist at the N-methyl-D-aspartate glutamate receptor (NMDAR).! At sub-
anesthetic doses, ketamine displays a complex psychoactive profile reflecting at least
partially its influence on central glutamatergic and monoaminergic
neurotransmission.>> Importantly, recent work has shown that a single infusion of low
dose ketamine over 40-60 minutes in subjects with major depression produces rapid
antidepressant effects (within hours) that persist for up to 1-2 weeks, well beyond the
duration of its initial psychotomimetic effects or pharmacokinetic exposure.*> A
similar profile was observed in rodents.>%’

While molecular substrates underlying the antidepressant effects of ketamine
still remain unclear, studies on rodent models offered important mechanistic insights.
Converging findings suggest that ketamine enhances glutamatergic neurotransmission
in frontocortical and hippocampal pyramidal neurons, possibly reflecting attenuation
of the inhibitory input from local GABAergic interneurons onto glutamatergic
neurons®®® and/or a reduced constitutive glutamatergic control of excitatory synaptic
drive at pyramidal neurons.®!° The increase in synaptic glutamate neurotransmission
is  thought to  preferentially  activate  o-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPAR)®!!12 that promote synthesis and release
of Brain Derived Neurotrophic Factor (BDNF),'*!'* which in turn drives structural
plasticity mediated by protein synthesis and dendrite outgrowth via activation of

mammalian target of rapamycin (mTOR) signaling.'>16:!7



Defective  functional and  structural plasticity in  glutamatergic
frontocortical/hippocampal circuits and/or mTOR downregulation has been described

18,1920 and in rodents after chronic stress.?!?> These

in patients with mood disorders
phenomena were reversed by chronic electroconvulsive therapy, chronic
pharmacological treatment with serotonin uptake inhibitors (SSRIs)*»**?° and
ketamine infusion.'> Their antidepressant actions involve activation of BDNF/TrkB
signaling and protein neosynthesis, producing incremental structural
plasticity.>*4%>26 Structural plasticity can be defined and characterized by evidence
for morphological changes in primary dendrite length, dendrite number and/or
branching, an increased soma area’’ and/or changes in the number and shape of
dendritic spines.'?

However, engagement of frontocortical and hippocampal circuits may not
fully explain the antidepressant properties of ketamine. For example, anhedonia, a
core symptom of major depression, has been consistently associated with
dysfunctional mesolimbic dopaminergic (DA) transmission.?®?° The role of the DA
system in depression is supported by the evidence of reduced levels of dopamine
transporter (DAT) in basal ganglia*® and, indirectly, by the antidepressant properties
of drugs that activate dopamine neurotransmission, such as nomifensine, bupropione
and amphetamine.’! Significant antidepressant effects can be also produced by
pramipexole, a DA agonist with preferential affinity for the dopamine D3 receptor
(D3R).32333* D3Rs are enriched in ventral mesencephalon and expressed in DA
neurons.*>>*%3” Recent experiments showed that D3R-preferential DA agonists and
drugs that stimulate DA neurotransmission such as amphetamine and cocaine can

produce structural plasticity in vitro in mouse mesencephalic DA neurons.’®* These

effects are mediated by activation of D3R and its intracellular pathway which includes



mTOR signaling.*® Interestingly, ketamine has been shown to enhance DA
neurotransmission in rodents and humans,*'*** to possess acute psychomimetic
effects? and to have addictive potential' in addition to its alleviation of anhedonia and
depression: all these actions might be related to an influence upon the functional
plasticity of DA neurons.*

In light of the above, the present study directly examined the molecular
substrates underlying the influence of ketamine upon structural plasticity in DA
neurons in vitro as defined by maximal dendrite length, primary dendrite number and
soma area.’’” To this end, we adopted a translational cellular approach that
incorporated both mouse and human cellular models of DA neurons. The mouse
procedure was based on an established protocol of primary mesencephalic DA

38,39,40

neurons, while the human model employed human inducible pluripotent stem

cells (iPSCs) derived from a healthy donor and differentiated into DA neurons.**4
The latter methodology is a relatively recent development in neuropharmacology but

increasingly recognized as a translationally-relevant approach of importance for the

characterization of potential therapeutic agents.*’



Materials and methods

A more detailed description is found in Supplementary Materials and Methods and in

Supplementary Tables.

Pharmacological agents
Pharmacological agents used in the present study are detailed in Supplementary Table
S1. For each vehicle treatment, solvents required by specific drugs were used at the

same dilution used for the active treatment.

Animals

CD1 mice were provided by Charles River Laboratories (Calco, Italy); D3R knockout
(D3KO)*® and C57BL6/] syngenic mice by Jackson Laboratory (B6.129S4-
Drd3Tml1Dac/J). Animal care was in accordance with the European Community
Council Directive of September 2010 (2010/63/EU) with the approval of the
Institutional Animal Care and Use Committee of the University of Brescia and in line

with the Italian law.

Mouse primary mesencephalic cultures
Mouse mesencephalic neurons from embryonic day (E) 12.5 were prepared as

previously described. -3940

Human iPSCs culture and dopaminergic differentiation
NAS2 human iPSCs* were cultured on Matrigel-coated (BD Biosciences, San Jose,

CA) plates in mTeSR™1 medium (StemCell Technologies, Vancouver, BC, Canada).



Floor-plate based midbrain DA neuron induction and dual-SMAD inhibition protocols

were performed.*¢

In vitro pharmacological experiments: structural plasticity.

Neuronal cultures grown on coated coverslides were exposed to 0.001-10 uM
ketamine for 60 min. At the end of treatment the medium was replaced and neurons
were maintained in culture until fixation that was performed at 72 hrs.*’ Other
compounds (7-OH-DPAT*® Ro 25-6981,%* CX614,%° (2R,6R) hydroxynorketamine
(2R,6R)-HNK>") were used at concentrations ranging from 0.001 to 10 pM
(Supplementary Table S1) and applied for at least 12 hrs. Pharmacological inhibitors
and receptor antagonists were added to the cultures 20 min prior treatments. Fixed
cultures were stained with an anti-tyrosine hydroxylase (TH) antibody to identify DA
neurons and morphometrical analysis was performed to assess maximal dendrite
length, primary dendrite number and soma area.?’>%3°40 The sample size per
condition was 30, 50 and 40, respectively, obtained from two coverslides per

treatment group.

In vitro pharmacological experiments: intracellular signaling.

The rapid effects of ketamine on intracellular signaling were assessed by western blot
and immunofluorescence. The time-response curve of phosphorylated p70S6K (p-
p70S6K) to 1 uM ketamine was obtained at 2, 5, 10, 30 and 60 min by western blot.
Pharmacological inhibitors and receptor antagonists were added to the cultures 20 min
prior treatment with ketamine and analyzed at 5 min after exposure, when the p-
p70S6K signal was maximal. For studies comparing mesencephalic cultures from

D3KO and wild-type mice, cultures were exposed to either 1 uM ketamine or 50 nM



7-OH-DPAT for 5 min. The sample size per condition for western blot was 4-6, each
data being biological replicate from different experiments; for immunofluorescence
was 30 for TH" neurons and 60 for TH neurons, measured from two coverslides per

treatment group.

Statistical analysis

All statistical analyses were performed on biological replicates. Data were expressed
as mean * standard error of the mean (S.E.M.), if not stated otherwise. Measurements
of structural plasticity parameters, western blot and immunofluorescence were tested
for normality (D’Agostino & Pearson), either as crude data or after log
transformations. Significant differences from control conditions were determined
using either two-tailed unpaired Student’s #-test, one-way or two-way analysis of
variance (ANOVA) followed by a posteriori Bonferroni’s test for multiple
comparisons. When the test of normality was not satisfied, non-parametric tests were
used (e.g., Kruskal-Wallis or Friedman) followed by a posteriori Dunn’s test. The
sample size for assessing structural plasticity was based on available data®**’ to detect
a medium-large effect size (d=0.4-0.6), with alpha = 0.05 and power 80%. Each
experiment was replicated at least twice. All data were processed with Prism - version
7.0 (GraphPad Software, San Diego, CA). Outlier values were excluded if > 2 S.D.

from the mean.

Results

Structural plasticity induced by ketamine in primary cultures of mesencephalic DA
neurons depends on the activation of PI3K-mTOR signaling.

We studied the effects of ketamine on DA neurons in primary cultures generated from



E12.5 mouse mesencephalon. DA neurons were visualized using anti-TH antibodies
(TH") (Figure la and Supplementary Figure Sla); they represented 10%+4% of
neurons co-stained with anti-MAP2 antibody, these MAP2" neurons constituting 90-
95% of the total number of cells in the culture. Dual immunofluorescence analysis
showed that TH" neurons co-expressed the dopamine transporter (DAT), confirming
the phenotypic maturity of DA neurons (Supplementary Figure S1b). GABAergic
(GAD67") and glutamatergic (VGLUT2") neurons were also identified
(Supplementary Figures Slc and d), representing 20%=+7% and 38%+9% of neurons,
respectively. Both DA neurons and GABAergic neurons co-expressed NMDA/NR2B*
puncta (Supplementary Figure Sle and S1f).

Neuronal cultures were exposed to ketamine at a low concentration (micromolar
range) for 60 min, i.e., conditions that approximately match ketamine use in vivo.'>>
After the initial exposure, the culture medium was washed-out and replaced by
ketamine-free medium. Cultures were fixed at 72 hrs and processed for assessment of
structural plasticity. Significant concentration-dependent (0.001-10 uM) increases of
dendritic arborization and soma size were observed in TH" neurons (Figure la-b and
Supplementary Figure S2). Since a reliable significant effect was observed at 1 uM,
this was the dose used in all the following experiments. Validation of the actual
concentration in media was performed using HPLC-mass spectrometry that showed
levels of 0.9+0.1 uM very close to the original concentration applied (1 uM). Further,
no ketamine metabolites were detected following incubation.

Pretreatment with the PI3K inhibitor LY294002 (10 uM) or the mTORCI inhibitor
rapamycin (20 nM) completely blocked the effects of ketamine on all canonical
parameters used to assess structural plasticity (Figure 1c). The involvement of the

PI3BK-mTOR pathway in the effects of ketamine was further confirmed in acute



phosphorylation experiments performed at 2, 5, 10, 30 and 60 min exposure. Using
western blot, we found that ketamine increased mTORCI-dependent p70S6K
phosphorylation (p-p70S6K) with a maximal effect at 5 min, persisting for 60 min
(Figure 1d). This ketamine effect was antagonized by pretreatment with LY294002
(10 uM) (Figure le). Parallel immunofluorescence experiments showed that ketamine
significantly increased the basal levels of p-p70S6K in TH' neurons, demonstrating
that they at least partially account for the observations in the western blot studies
(Figure 1f and g). In addition, ketamine induced a p-p70S6K signal in TH™ neurons
suggesting that they may also be involved. Ketamine effects on p-p70S6K were
antagonized by pretreatment with LY294002 (10 uM) (Figure 1f and g). Overall,
these data indicate that the PI3K-mTOR signaling pathway is engaged in the influence
of ketamine on mouse mesencephalic DA neurons and may well be involved in its

effects on structural plasticity.

AMPA receptors coupled to mTOR signaling are involved in ketamine-induced
structural plasticity.

Using double-staining immunofluorescence we found that both GluR1 and GluR2
AMPAR subunits were expressed in TH" neurons in the mouse mesencephalic
cultures (Figures 2a and b), in line with published data.’> Semiquantitative
immunofluorescence image analysis indicated that GluR1 was preferentially
expressed in the soma while GluR2 clustered in dendrites (Figure 2¢). Since AMPAR
activation is known to trigger protein synthesis and dendrite outgrowth in

neurons, 334

we exposed the cultures to the AMPAR positive allosteric modulator
(PAM) CX614 enhancing structural plasticity in a concentration-dependent fashion

(0.5-10 uM) (Supplementary Figure S3b). The effects of CX614 (10 uM) were

10



blocked by pretreatment with the selective AMPAR antagonist NBQX (10 uM) and
also by rapamycin (20 nM) (Figure 2d), indicating that AMPA-mediated signaling
drives mTOR-dependent dendrite outgrowth in mesencephalic DA neurons. The
involvement of AMPAR in ketamine-induced structural plasticity was likewise
studied using NBQX (0.01-10 uM) as well as the AMPAR negative allosteric
modulator (NAM) GYKI 52466 (0.01-10 uM). Both compounds dose-dependently
blocked the effects of ketamine (Figure 2¢). In a series of acute phosphorylation
studies using western blot we showed that pretreatment with NQBX (10 uM) blocked
the peak of p-p70S6K observed 5 min after ketamine exposure, further supporting
AMPAR-mediated structural plasticity via activation of the mTOR pathway (Figure
2f).

We further studied the role of NMDAR in the downstream activation of AMPAR
using the selective NMDAR/NR2B antagonist Ro 25-6981. Ro 25-6981 produced a
concentration-dependent (0.01-1 uM) increase of structural plasticity, with a minimal
effective concentration (statistically significant action) of 0.1 uM (Supplementary
Figure S3c). Pretreatments with NBQX or GYKI 52466 completely prevent the
effects of 1 uM Ro 25-6981 (Figure 2g), confirming the role of AMPAR activation in

structural plasticity produced by NMDAR/NR2B antagonism (Figure 2h).

BDNF-TrkB signaling is involved in structural plasticity induced by ketamine.

Activation of BDNF-TrkB signaling upstream to mTOR pathway is considered a
critical step in mediating the antidepressant effects of ketamine and structural
plasticity in frontocortical-hippocampal circuits.>!*!® Hence, we assessed if BDNF-
TrkB signaling has a similar role in DA neurons. We first examined the influence on

ketamine-induced structural plasticity of either an anti-BDNF blocking antibody

11



(0-BDNF) or a TrkB-Fc Chimera!® (a cell membrane-impermeable BDNF
scavenger). They were applied to neuronal cultures 20 min before a 60-min exposure
to ketamine. Both agents fully blocked the effects of ketamine, while they were
inactive when applied alone (Figure 3a). The effects of ketamine were also blocked by
targeting intracellular BDNF-TrkB signaling using the TrkB phosphorylation inhibitor
K252a, the TrkB-dependent Src phosphorylation inhibitor PP2 and the MEK-
phosphorylation inhibitor PD98059 (Figure 3b). Pretreatment with a—BDNF or TrkB-
Fc Chimera were also effective in blocking structural plasticity induced by CX614
(Figure 3c) in DA neurons, in line with previous observations in rodent telencephalic
neurons.'® These data support a role of AMPAR-dependent BDNF/TrkB signaling in

the structural plasticity induced by ketamine in mesencephalic DA neurons.

Role of dopamine D3 receptors in ketamine-induced structural plasticity.

We previously showed that DA agonists produce structural plasticity in cultured
mouse DA neurons via D3R-dependent activation of ERK and PI3K-mTOR
pathways.*®**40 This signaling partially overlaps with intracellular signaling so far
described for ketamine (Figure 4h), suggesting a possible interaction. Here we studied
the contribution of D3R activation or blockade to ketamine-induced structural
plasticity. Pretreatment with the selective D3R antagonists SB277011-A% and
S33084°° blocked ketamine-induced structural plasticity and this effect was specific
inasmuch as it was not observed with the selective D1 receptor (D1R) antagonist
SCH23390%" (Figure 4a). The lack of effect of SCH23390 was expected since D1Rs
are not expressed in mesencephalic DA neurons.’ Pretreatment with SB277011-A
also inhibited the effect of CX614 (Figure 4b), suggesting a permissive role of DA

D3R in AMPAR-mediated structural plasticity.
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Using western blot, we studied the contribution of D3R to the PI3K-mTOR pathway
activation induced by ketamine. Ketamine effects on p-p70S6K were antagonized by
pretreatment with SB277011-A  (Figure 1c). Parallel immunofluorescence
experiments showed that the effect of ketamine on p-p70S6K was antagonized by
pretreatment with SB277011-A in TH' neurons (Figure 4d and €). Sampling of TH
neurons showed that SB277011-A also partially blocked the ketamine-induced p-
p70S6K increase. These findings were confirmed in mesencephalic DA neurons
obtained from D3KO mice and wild-type mice: ketamine, the D3-preferential agonist
7-OH-DPAT and BDNF induced structural plasticity in wild-type DA neurons,
whereas BDNF was the only agent to be effective in D3KO DA neuronal cultures
(Figure 3f). In acute phosphorylation experiments, ketamine and 7-OH-DPAT rapidly
increased p-p70S6K in DA neurons from cultures of wild-type mice, but not of D3KO
mice (Figure 4g). These data support the involvement of D3R signaling in PI3K-

mTOR-mediated effects of ketamine on structural plasticity of DA neurons.

Ketamine induces structural plasticity in human iPSCs derived DA neurons.

We studied the effects of ketamine on human DA neurons differentiated from iPSCs.
After 80 days in vitro, the cultures contained 31%+4% TH' neurons, 22%+5%
GAD67" neurons and 29%+8% VGLUT2" neurons co-stained with anti-MAP2
antibody, these MAP2" neurons constituting 80-90% of the total number of cells in
the culture (Supplementary Figure S4c and d). TH™ neurons consistently expressed
DAT indicating a mature DA phenotype (Supplementary Figure S4b). Similarly to
mouse mesencephalic cultures, TH" neurons expressed NMDAR/NR2B subunits and
AMPAR subunits (Supplementary Figure S4e, g and h). GABAergic neurons also

expressed the NMDAR/NR2B subunit (Supplementary Figure S4f).
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Exposure to ketamine (0.01-1 uM) for 60 min elicited a concentration-dependent
increase in structural plasticity measured after 72 hrs, similar to that observed in
mouse cultures (Supplementary Figure S5a). Further, the NMDAR NR2B antagonist
Ro 25-6981, when tested at the same concentration used in mouse cultures, likewise
promoted plasticity (Figure 5a and b). Structural plasticity elicited by ketamine was
blocked by pretreatment with NBQX or GYKI 52466 (Figure 5b), supporting the
involvement of AMPAR. The critical role of AMPAR activation was confirmed using
CX614 that revealed a concentration-dependent induction of structural plasticity
(Supplementary Figure S5b and c¢). The effects of CX614 were blocked by
pretreatment with NBQX and rapamycin (Supplementary Figure S5d). The
involvement of BDNF-TrkB signaling was underpinned by using the same
experimental approach as in the mouse studies, i.e., an o—BDNF antibody and a
TrkB-Fc Chimera (Figure 5c) as well as the TrkB/MEK inhibitors K252a, PP2 and
PD98059 (Figure 5d). All blocked the increase in plasticity evoked by ketamine in
human DA neurons. A role of D3R in mediating the effects of ketamine on structural
plasticity in human DA neurons was demonstrated using the D3R antagonists
SB277011-A and S33084 (Figure 5e¢). We also established the involvement of the
PI3K-mTOR pathway using LY294002 and rapamycin (Figure 5f). A pattern similar
to what observed in mouse DA neurons was also observed in the acute
phosphorylation experiments. Using western blot, ketamine induced a rapid increase
of p-p70S6K levels with a peak 5 min after exposure, an effect that lasted 60 min
(Figure 5g). Parallel immunofluorescence experiments (Figure 5h) showed that
ketamine significantly increased the basal levels of p-p70S6K in TH" neurons, a

positive effect was likewise seen in TH™ neurons (Figure 5h and 1).
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(2R,6R)-HNK induces structural plasticity in mouse mesencephalic and human iPSCs
derived DA neurons.

Recent in vivo studies have shown that the ketamine metabolite (2R,6R)-HNK
produces rapid and sustained antidepressant effects in rodents.’! Since in human
(2R,6R)-HNK is the major metabolite of ketamine and its levels remain elevated for
several hours in sub-micromolar range,® we studied the effects of 0.1-0.5 puM
(2R,6R)-HNK on structural plasticity at the exposure time of 60 min and 6 hrs. At the
concentration of 0.5 uM, (2R,6R)-HNK produced a significant increase of structural
plasticity in both mouse mesencephalic and human iPSC-derived DA neurons (Table
1 and 2), showing trends for increases at 0.1 uM. All increases were visible at both

time points, showing stronger effects at 6 hrs after dosing.
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Discussion

Using in vitro models of primary DA neurons from mouse embryo
mesencephalon and human iPSC-derived DA neurons, the present study demonstrates
for the first time that transient exposure to ketamine dose-dependently promotes
structural plasticity as determined by enhanced dendritic outgrowth and increased
soma size. The molecular mechanisms underpinning the influence of ketamine on
structural plasticity of mouse and human DA neurons involved both BDNF and
mTOR signaling and the upstream activation of AMPAR. Their implication mirrors
their role in the control of dendritic remodeling and structural plasticity in
frontocortical and hippocampal neurons.'>!%!7-3 In addition, we identify a novel role
for dopamine D3R-dependent signaling in the actions of ketamine.

The effects of ketamine on structural plasticity were paralleled by the selective
NMDAR/NR2B antagonist Ro 25-6981,% a compound that shares with ketamine
antidepressant effects and frontocortical/hippocampal circuit remodelling in
mice.>!"15 Ro 25-6981, which was shown to be more potent than ketamine on
[3H]MK-801 binding both in vitro (about 20-fold) and in vivo (about 4-fold),®
correspondingly promoted structural plasticity in DA neurons at a concentration 10-
fold lower than ketamine (0.1-1 uM). We also observed that the ketamine metabolite
(2R,6R)-HNK induced structural plasticity in both mice and human DA neurons at
sub-micromolar concentrations. Recent findings indicate that (2R,6R)-HNK has
antidepressant-like properties in mice.’! It was proposed that some of the long-lasting
pharmacological effects of ketamine are mediated by its metabolites in vivo.’!86! In
our in vitro preparations we did not find metabolites, supporting ketamine direct

effect. In the present study the effective concentrations of both ketamine (1-10 pM)

and (2R,6R)-HNK (0.5 uM) for promoting neuroplasticity were 5-10 times lower than

16



those observed by electrophysiology on hippocampal neurons in vitro,*! a difference
probably related to the different neural phenotype tested (i.e., mesencephalic DA vs.
hippocampal), the different exposure time (i.e., sec/min for electrophysiology vs.
hours for plasticity) and the fact that electrophysiological studies were undertaken in
media free of Mg'" that behaves as an open channel blocker at NMDAR. All these
factors may account for the need for higher concentrations of ketamine in
electrophysiological works. Interestingly, human pharmacokinetic studies indicated
that the peak plasma levels of ketamine and (2R,6R)-HNK following therapeutic sub-
anaesthetic infusion of ketamine in patients with mood disorders>® are in the same
order of magnitude as concentrations effective herein for inducing structural plasticity
in DA neurons.

Pharmacological inhibitors of the mTOR intracellular pathway profoundly
affected ketamine-induced structural plasticity in both mice and human DA neurons.
One of these inhibitors, rapamycin, was previously shown to block ketamine-
dependent dendritic spine remodelling in frontocortical neurons.'” Indeed, mTOR
pathway was rapidly activated by ketamine, as indicated by the increased p-p70S6K
levels in both mouse and human DA neurons, peaking at 5 min and remaining
elevated up to 60 min. The activation of mTOR pathway of both DA and non-DA
neurons was expected since NMDAR are expressed also in GABAergic and
glutamatergic neurons.®!°

The parallels in molecular substrates engaged by ketamine in neurons of
frontocortical/hippocampal circuits and mesencephalic DA system do not stop here: in
both systems the promotion of structural plasticity induced by ketamine (and Ro 25-

R,11’15’17’62

6981) was dependent upon functionally-intact AMPA as showed by the

blocking effects of AMPAR antagonists or direct activation using the AMPAR PAM
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CX614 that reproduced the actions of ketamine in DA neurons. Converging findings
indicate a role of an enhanced AMPAR transmission in mediating the behavioural

6,8,11,12 and

antidepressant properties of ketamine and AMPAR PAMs in rodents
humans.®® Intriguingly, enhanced AMPAR neurotransmission was observed in DA
neurons of transgenic mice upon selective inactivation of NMDAR/NRI1 achieved by
crossing floxed NR1 mice with mice carrying Cre recombinase driven by DAT
promoter.®* The findings of our cellular models are in keeping with this literature

contributing to the interpretation of the central role of AMPAR.

BDNF-TrkB signaling has been extensively studied as a potential substrate for

165 24,26,66

the influence of antidepressants on functional®™ and structural plasticity.
Increased BDNF synthesis and release in rodent frontocortical/hippocampal circuits
were observed after acute exposure to either ketamine>'*!” or AMPAR PAMs,!33462
Further, BDNF-TrkB signaling is critical for recruiting the molecular machinery
involved in structural dendritic outgrowth and remodelling.!*!%? In the present work,
using the same blocking agents as those used to dissect out mechanisms of AMPAR-
dependent BDNF-TrkB signaling in hippocampal neurons,'* a BDNF-TrkB cascade
was shown to be necessary for mediating the influence of both ketamine and the
AMPAR PAM CX614 on structural plasticity in DA neurons. Since low BDNF
expression in the VTA and dysfunctional DA neurotransmission are core features of
anhedonia,”®” ketamine may conceivably exerts its sustained antidepressant effects
by activating BDNF/TrkB signaling to enhance structural (and functional**) plasticity
of DA system. Supporting evidence in rodents includes the antidepressant-like effects
produced by exogenous BDNF infusions in VTA% and increases of BDNF expression

in both hippocampus and VTA upon chronic treatment with fluoxetine.®” However,

while a certain degree of BDNF-TrkB signaling could be beneficial for the stress-
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coping response,’®’ excessive and prolonged enhancement of BDNF-TrkB signaling in
the VTA via transgenic overexpression produces an aversive motivational state and

28,70

increased vulnerability to stress, suggesting the need of calibrated regulation.

The present study provides novel and robust evidence that D3Rs are involved

38,39,40

in the effects of ketamine on DA neurons. In a series of recent studies, we and

others’!"?

showed that D3R activation leads to structural plasticity in DA neurons, an
effect transduced by intracellular ERK and PI3K-dependent-mTOR signaling. Using
selective D3R antagonists and D3KO mice, D3R-mediated neurotransmission was
shown to be necessary for the rapid activation of mTOR signaling and the delayed
enhanced dendritic outgrowth elicited by ketamine and CX614. Since mTOR
phosphorylation is also triggered by BDNF-induced TrkB activation,'® we propose a
convergence between the D3R and BDNF-TrkB pathways to promote structural
plasticity. In line with this interpretation, in a study on rats with nigrostriatal lesions,
nanovector-mediated BDNF overexpression enhanced the effects of the D3R
preferential DA agonist 7-OH-DPAT on the structural plasticity of mesencephalic DA
neurons.”” By analogy to mouse mesencephalic cultures, functionally intact D3R
signaling was also necessary in human iPSC-derived DA neurons for the actions of
ketamine. Intriguingly, human PET studies have shown that almost all binding sites in
the ventral mesencephalon are of the D3R type,’* supporting the clinical relevance of
our findings also in light of the antidepressant effects observed with the D3R-
preferential DA agonist pramipexole.’3-*

In conclusion, this work explored cellular mechanisms underpinning the
influence of ketamine upon structural plasticity in DA neurons using an in vitro

paradigm based on the parallel assessment of mice primary neural cultures and human

1PSC-derived neurons. The remarkable similarities in the influence of ketamine across
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these two cellular paradigms mutually support the role of AMPAR, mTOR, BDNF
and D3R signaling in the actions of ketamine. From a translational perspective, the
comparable data seen in human iPSC-derived and mouse DA neurons strongly
underscores the relevance of the present work to the pharmacological actions of
ketamine in humans. However, in addition to its antidepressant properties, like other
channel blockers of NMDA receptors, ketamine exerts psychoactive effects and can
even provoke psychosis at high doses?’. Accordingly, structural remodelling of
mesencephalic DA neurons might be involved in actions of ketamine other than the
alleviation of depressed mood. Further cellular and in vivo work will be required to

clarify the precise functional significance of the present findings.
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Figure legends

Figure 1. Ketamine-induced structural plasticity in mouse mesencephalic
dopaminergic (DA) neurons depends upon activation of the mTOR pathway. (a)
Representative photomicrographs of TH™ neurons at 72 hrs after initial transient
exposure (60 min) to 1 uM ketamine (right panel) or vehicle (left panel). Scale bar: 50
um. (b) Morphometric assessment of TH™ neurons performed at 72 hrs after an initial
transient exposure (60 min) to various doses of ketamine (0.001-10 uM) or vehicle.
Three structural plasticity parameters were measured: maximal dendrite length [One-
way ANOVA F(5,174) = 6.29, P<0.0001], primary dendrite number [Kruskal-Wallis
(5,300) = 16.3, P<0.01] and soma area [One-way ANOVA F(5,234) = 5.28,
P=0.0001]. 0 = Vehicle. (¢) Inhibition of ketamine-induced structural plasticity
following pretreatment (20 min) with either the PI3K inhibitor LY294002 (10 uM) or
the mTORCI inhibitor rapamycin (20 nM), measured 72 hrs after initial transient
exposure (60 min) to 1 uM ketamine: maximal dendrite length [Two-way ANOVA
interaction: F(2,174) = 10, P<0.0001; treatment factor: F(1,174) = 8.7, P<0.005;
inhibition factor: F(2,174) = 0.88, ns], primary dendrite number [Friedman (5,300) =
15.1, P<0.001] and soma area [Two-way ANOVA interaction: F(2,234) = 6.2,
P<0.005; treatment factor: F(1,234) = 13.6, P<0.0005; inhibition factor: F(2,234) =
4.4, P<0.05]. (d) Effects of transient exposure (2-60 min) to 1 pM ketamine on
phosphorylated p70S6K (p-p70S6K) levels measured with western blot and analyzed
by densitometry [One-way ANOVA F(5,24) = 4.97, P<0.01]; p-p70S6K levels were
normalised to the corresponding p70S6K, TH and tubulin levels. The densitometric
values are represented as percentage of vehicle values. (e) Blockade of increase of p-

p70S6K levels induced by 1 uM ketamine after pretreatment with LY294002 (10 uM)
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analyzed by densitometry on normalized western blots [Two-way ANOVA
interaction: F(1,12) = 4.8, P<0.05; treatment factor: F(1,12) = 10.5, P<0.01; inhibition
factor: F(1,12) = 14.0, P<0.005]. (f) Representative photomicrographs of TH" neurons
(red) expressing p-p70S6K (green) after vehicle, 1 uM ketamine, pretreament with
LY294002 (10 uM) followed by 1 uM ketamine or LY294002 (10 uM) alone. (g)
Semiquantitative image analysis of p-p70S6K fluorescence intensity. In TH" neurons,
the significant increase of p-p70S6K is attenuated by LY294002 pre-treatment [Two-
way ANOVA interaction: F(1,116) = 33.0, P<0.0001; treatment factor: F(1,116) =
11.5, P<0.001; inhibition factor: F(1,116) = 38.5, P<0.0001]; in a sample of TH"
neurons a similar effect was observed [Two-way ANOVA interaction: F(1,243) =
15.1, P<0.0001; treatment factor: F(1,243) = 27.4, P<0.0001; inhibition factor:
F(1,243) = 11.4, P<0.001]. Experiments of pharmacologic antagonism on p-p70S6K
levels were performed at 5 min after exposure to ketamine to obtain the maximal
dynamic range. Cell nuclei were stained with DAPI. Scale bar: 50 um. In all panels,
data are expressed as mean + S.E.M. (***P<0.001, **P<0.01, *P<0.5 vs. vehicle;
°°P<0.001, °°P<0.01, °P<0.05 vs. ketamine, post-hoc Bonferroni’s or Dunn’s test). V

= vehicle; K = ketamine; LY = LY294002; R = rapamycin.

Figure 2. Ketamine-induced structural plasticity is mediated via AMPAR
activation. (a and b) Representative photomicrographs showing co-distribution of
TH' (red) and GluR1" (green) (a) or GIuR2" (green) (b), respectively. Cell nuclei
were stained with DAPI. Scale bar: 20 um. (¢) Semiquantitative image analysis of
GIuR1" and GIluR2" fluorescence intensity in soma vs. dendrites of TH" neurons
[Two-way ANOVA interaction: F(1,116) =40.8, P<0.0001; GLUR factor: F(1,116) =

0.01, ns; soma/dendrites factor: F(1,116) = 0.9, ns]. (d) Inhibition of the effects of the
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AMPAR positive allosteric modulator CX614 (10 uM) on structural plasticity
following pretreatment (20 min) with either the AMPAR antagonist NBQX (10 uM)
or rapamycin (20 nM) measured after 72 hrs: maximal dendrite length [Two-way
ANOVA interaction: F(2,174) = 7.6, P<0.001; treatment factor: F(1,174) = 12.2,
P<0.001; inhibition factor: F(2,174) = 3.8, P<0.05], primary dendrite number
[Friedman (5,300) = 12.2, P<0.05] and soma area [Two-way ANOVA interaction:
F(2,234) = 8.3, P<0.0005; treatment factor: F(1,234) = 1.5, ns; inhibition factor:
F(2,234) = 7.9, P<0.0005]. (e) Concentration-dependent inhibition of 60 min
ketamine-induced structural plasticity following pretreatment with either NBQX
(0.01-10 uM) or GYKI52466 (0.01-10 uM) on maximal dendrite length [NBQX:
One-way ANOVA F(5,174) = 7.11, P<0.0001 and GYKI52466: One-way ANOVA
F(5, 174) = 5.57, P<0.0001], primary dendrite number [NBQX: Kruskal-Wallis
(5,300) = 15.3, P<0.01 and GYKI52466: Kruskal-Wallis (5,300) = 15.4, P<0.01] and
soma area [NBQX: One-way ANOVA F(5,234) = 3.92, P<0.001 and GYKI52466:
One-way ANOVA F(5,234) = 5.26, P<0.0001]. Data are expressed as mean of %
maximal ketamine effect; ANOVA was performed on the raw data. (f) Blockade of
increase of p-p70S6K levels induced by 1 uM ketamine after pretreatment with
NBQX (10 pM) measured 5 min after exposure and analyzed by densitometry on
normalized western blots [Two-way ANOVA interaction: F(1,19) = 11.3, P<0.005;
treatment factor: F(1,19) = 2.4, ns; inhibition factor: F(1,19) = 6.4, P<0.02]. (g)
Inhibition of structural plasticity induced by the selective NMDAR/NR2B antagonist
Ro 25-6981 (1 uM) following pretreatment with either NBQX (10 uM) or
GYKI52466 (10 uM): maximal dendrite length [Two-way ANOVA interaction:
F(2,169) = 3.1, P<0.05; treatment factor: F(1,169) = 7.9, P<0.01; inhibition factor:

F(2,169) = 5.2, P<0.01], primary dendrite number [Friedman (5,300) = 13.5, P<0.02]
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and soma area [Two-way ANOVA interaction: F(2,234) = 9.1, P<0.0005; treatment
factor: F(1,234) = 21.4, P<0.0001; inhibition factor: F(2,234) = 8.9, P<0.0002]. (h)
Cartoon representing intracellular pathway activation involved in structural plasticity
following NMDAR blockade by either ketamine or Ro 25-6981 in mouse
mesencephalic DA cultures. All data are expressed as mean values. In panels (¢, d, f
and g), values are represented as mean = S.E.M. (***P<(0.001, **P<0.01 vs. vehicle;
°°pP<0.001, °°P<0.01, °P<0.05 vs. ketamine, CX614 or Ro 25-6981, post-hoc
Bonferroni’s or Dunn’s test). V = vehicle; K = ketamine; R = rapamycin; Ro = Ro 25-

6981; GYKI = GYKI52466.

Figure 3. BDNF-TrkB signaling is involved in structural plasticity induced by
ketamine. (a) Inhibition of the effects of ketamine on structural plasticity following
pretreatment (20 min) with either an anti-BDNF blocking antibody (10 pg/ml) or a
TrkB-Fc Chimera (5 pg/ml): maximal dendrite length [Two-way ANOVA interaction:
F(2,174) = 11.5, P<0.0001; treatment factor: F(1,714) = 10.7, P<0.002; inhibition
factor: F(2,174) = 2.9, ns], primary dendrite number [Friedman (5,300) = 12.7,
P<0.05] and soma area [Two-way ANOVA interaction: F(2,234) = 8.4, P<0.0005;
treatment factor: F(1,234) = 3.7, P<0.05; inhibition factor: F(2,234) = 11.4,
P<0.0001]. (b) Inhibition of the effects of ketamine on structural plasticity following
pretreatment (20 min) with either the TrkB phosphorylation inhibitor K252a, the Src
phosphorylation inhibitor PP2 and the MEK phosphorylation inhibitor PD98059:
maximal dendrite length [Two-way ANOVA interaction: F(3,232) = 10.7, P<0.0001;
treatment factor: F(1,232) = 3.4, ns; inhibition factor: F(2,232) = 5.0, P<0.005],
primary dendrite number [Friedman (7,400) = 18.1, P<0.02] and soma area [Two-way

ANOVA interaction: F(3,312) = 13.8, P<0.0001; treatment factor: F(1,312) = 6.6,
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P<0.01; inhibition factor: F(3,312) = 2.8, P<0.05]. (¢) Inhibition of the effects of
CX614 (10 uM) on structural plasticity following pretreatment (20 min) with either
the anti-BDNF blocking antibody or the TrkB-Fc Chimera: maximal dendrite length
[Two-way ANOVA interaction: F(2,167) = 6.9, P<0.002; treatment factor: F(1,167) =
15.1, P<0.0001; inhibition factor: F(2,167) = 8.1, P<0.001], primary dendrite number
[Friedman (5,300) = 12.3, P<0.05] and soma area [Two-way ANOVA interaction:
F(2,234) = 6.2, P<0.005; treatment factor: F(1,234) = 3.0, ns; inhibition factor:
F(2,234) = 6.0, P<0.005]. All data are expressed as mean values = S.E.M.
(***P<0.001, **P<0.01 vs. vehicle; °°°P<0.001, ®°P<0.01, °P<0.05 vs. ketamine or
CX614 post-hoc Bonferroni’s or Dunn’s test). V = vehicle; K = ketamine; a—BDNF =

anti-BDNF blocking antibody; TrkB-Fc = TrkB-Fc Chimera; PD = PD98059.

Figure 4. Permissive role of DA D3R in ketamine-induced structural plasticity in
DA neurons. (a) Inhibition of the effects of ketamine (1 uM) on structural plasticity
following pretreatment (20 min) with the selective D3R antagonists SB277011-A (50
nM) and S33084 (10 nM): maximal dendrite length [Two-way ANOVA interaction:
F(3,232) = 7.5, P<0.0001; treatment factor: F(1,232) = 35.5, P<0.0001; inhibition
factor: F(3,232) = 1.7, ns], primary dendrite number [Friedman (7,400) = 24.0,
P<0.001] and soma area [Two-way ANOVA interaction: F(3,312) = 5.2, P<0.002;
treatment factor: F(1,312) = 14.2, P<0.0005; inhibition factor: F(3,312) = 2.7,
P<0.05]. Pretreatment (20 min) with the DIR antagonist SCH23390 (1 uM) was
ineffective. (b) Inhibition of the effects of CX614 (10 uM) on structural plasticity
following pretreatment with SB277011-A (50 nM): maximal dendrite length [Two-
way ANOVA interaction: F(1,116) = 22.7, P<0.0001; treatment factor: F(1,116) =

14.8, P<0.0002; inhibition factor: F(1,116) = 5.0, P<0.05], primary dendrite number
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[Friedman (3,200) = 10.2, P<0.02] and soma area [Two-way ANOVA interaction:
F(1,156) = 6.1, P<0.02; treatment factor: F(1,156) = 8.8, P<0.005; inhibition factor:
F(1,156) = 5.6, P<0.002]. (¢) Blockade of increase of p-p70S6K levels induced by 1
uM ketamine after pretreatment with SB277011-A (50 nM) analyzed by densitometry
on normalized western blots: [Two-way ANOVA interaction: F(1,12) = 4.6, P<0.05;
treatment factor: F(1,12) = 8.3, P<0.02; inhibition factor: F(1,12) = 3.8, ns]. (d)
Representative photomicrographs of TH' neurons expressing p-p70S6K after vehicle,
ketamine (1 uM), pretreament with SB277011-A (50 nM) followed by ketamine (1
uM), or SB277011-A (50 nM) alone. (e) Semiquantitative image analysis of p-
p70S6K fluorescence intensity. In TH" neurons, the significant increase of p-p70S6K
is attenuated by SB277011-A pre-treatment [Two-way ANOVA interaction: F(1,116)
= 11.0, P<0.002; treatment factor: F(1,116) = 21.1, P<0.0001; inhibition factor:
F(1,116) = 19.3, P<0.0001]; in a sample of TH neurons less inhibition by SB277011-
A was observed [Two-way ANOVA interaction: F(1,238) = 3.3, ns; treatment factor:
F(1,238) = 30.6, P<0.0001; inhibition factor: F(1,238) = 6.0, P<0.05]. Cell nuclei
were stained with DAPI. Scale bar: 50 um. (f) Structural plasticity in DA neurons
from D3KO vs wild-type mice. Mesencephalic cultures were exposed to either
ketamine (1 pM for 60 min), D3R agonist 7-OH-DPAT (10 nM) or BDNF (10 ng/ml)
and structural plasticity was measured 72 hrs after treatment, showing prevalent
significant genotype and treatment effects on maximal dendrite length [Two-way
ANOVA interaction: F(3,232) = 4.76, P<0.005; treatment factor: F(3,232) = 17.32,
P<0.0001; genotype factor: F(1,232) = 12.03, P<0.001], primary dendrite number
[Friedman (7,400) = 30.5, P<0.0001] and soma area [Two-way ANOVA interaction:
F(3,312) = 3.02, P<0.05; treatment factor: F(3,312) = 12.21, P<0.0001; genotype

factor: F(1,312) = 9.98, P<0.002]. (g) Lack of effect of ketamine (1 uM) on p-
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p70S6K levels in mesencephalic neuronal cultures from D3KO mice analyzed by
densitometry on normalized western blots: [ANOVA main factor genotype: F(1,24) =
44.42, P<0.0001; main factor treatment: F(2,24) = 6.31, P<0.01; interaction: [F(2,24)
= 6.67, P<0.005]. (h) Cartoon representing the molecular signaling involved in
determining ketamine-induced structural plasticity in mouse mesencephalic DA
cultures. In all panels, values are represented as mean += S.E.M. (***P<0.001,
**P<(0.01, *P<0.5 vs. vehicle; °°°P<0.001, °°P<0.01, °P<0.5 vs. ketamine or CX614,
post-hoc Bonferroni’s or Dunn’s test). V = vehicle; K = ketamine; SB = SB277011-A;
S33= S33084; SCH= SCH23390; D3KO = D3R knockout mice; WT = wild-type

mice.

Figure S. Structural plasticity in human iPSC-derived DA neurons via activation
of mTOR pathway. (a) Representative photomicrographs showing the morphological
changes of human DA neurons exposed to vehicle, ketamine (1 uM for 60 min) or Ro
25-6981 (1 uM for 72 hrs). Cultures were fixed after 72 hrs and stained with an anti-
TH antibody. Scale bar: 50 um. (b) Inhibition of the effects of ketamine (1 uM) and
Ro 25-6981 (1 uM) on structural plasticity following pretreatments (20 min) with
NBQX (10 uM) or GYKI52466 (10 uM): maximal dendrite length [Two-way
ANOVA interaction: F(4,261) = 4.2, P<0.005; treatment factor: F(2,261) = 3.6,
P<0.05; inhibition factor: F(2,261) = 12.4, P<0.0001], primary dendrite number
[Friedman (8,450) = 26.8, P<0.001] and soma area [Two-way ANOVA interaction:
F(4,351) = 3.5, P<0.01, treatment factor: F(2,351) = 2.1, ns; inhibition factor:
F(2,351) = 10.4, P<0.0001]. (¢) Inhibition of the effects of ketamine on structural
plasticity following pretreatment (20 min) with either an anti-BDNF blocking

antibody (10 pg/ml) or a TrkB-Fc Chimera (5 pg/ml): maximal dendrite length [Two-
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way ANOVA interaction: F(2,174) = 4.1, P<0.02; treatment factor: F(1,174) = 1.7, ns;
inhibition factor: F(2,174) = 2.8, ns], primary dendrite number [Friedman (5,300) =
13.7, P<0.02] and soma area [Two-way ANOVA interaction: F(2,234) = 4.3, P<0.02;
treatment factor: F(1,234) = 3.3, ns; inhibition factor: F(2,234) = 3.9, P<0.05]. (d)
Inhibition of the effects of ketamine on structural plasticity following pretreatment
(20 min) with either the TrkB phosphorylation inhibitor K252a, the Src
phosphorylation inhibitor PP2 and the MEK phosphorylation inhibitor PD98059:
maximal dendrite length [Two-way ANOVA interaction: F(3,232) = 4.3, P<0.002;
treatment factor: F(1,232) = 1.5, ns; inhibition factor: F(3,232) = 3.2, P<0.05],
primary dendrite number [Friedman (7,400) = 15.0, P<0.05] and soma area [Two-way
ANOVA interaction: F(3,312) = 3.3, P<0.02; treatment factor: F(1,312) = 1.8, ns;
inhibition factor: F(3,312) = 3.9, P<0.01]. (e) Inhibition of effects of ketamine (1 uM)
by pretreatment (20 min) with SB277011-A (50 nM), S33084 (10 nM), SCH23390 (1
uM): maximal dendrite length [Two-way ANOVA interaction: F(3,232) = 5.0,
P<0.005; treatment factor: F(1,232) = 20.5, P<0.0001; inhibition factor: F(3,232) =
2.7, P<0.05], primary dendrite number [Friedman (7,400) = 22.0, P<0.005] and soma
area [Two-way ANOVA interaction: F(3,312) = 4.3, P<0.01; treatment factor:
F(1,312) = 7.2, P<0.01; inhibition factor: F(3,312) = 3.0, P<0.05]. (f) Inhibition of
effects of ketamine (1 uM) by pretreatment (20 min) with LY294002 (10 uM) or
rapamycin (20 nM): maximal dendrite length [Two-way ANOVA interaction:
F(2,174) = 3.8, P<0.05; treatment factor: F(1,174) = 3.0, ns; inhibition factor:
F(2,174) = 5.3, P<0.01], primary dendrite number [Friedman (5,300) = 13.2, P<0.05]
and soma area [Two-way ANOVA interaction: F(2,234) = 5.4, P<0.005; treatment
factor: F(1,234) = 0.8, ns; inhibition factor: F(2,234) = 2.0, ns]. (g) Effects of transient

exposure (2-60 min) to 1 uM ketamine on p-p70S6K levels analzyed by densitometry
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on normalized western blots: [One-way ANOVA F(5,18) = 3.10, P<0.05]; p-p70S6K
levels were normalized to the corresponding p70S6K, TH and tubulin levels. The
densitometric values are represented as percentage of vehicle values. Maximal
increase was seen at 5 min after ketamine exposure. (h) Representative
photomicrographs of TH" neurons (red) expressing p-p70S6K (green) after vehicle or
1 uM ketamine. (i) Semiquantitative image analysis of p-p70S6K fluorescence
intensity in TH" and TH™ neurons: ketamine increased p-p70S6K levels vs vehicle in
TH" [t(68) = 9.4, P<0.0001] and TH™ [t(138) = 7.6, P<0.0001]. Cell nuclei were
stained with DAPI. Scale bar: 50 um. In all panels, values are represented as mean +
S.EM. (¥**P<0.001, **P<0.01, *P<0.5 vs. vehicle; °°°P<0.001, °°P<0.01, °P<0.5

vs. ketamine or Ro 25-6981; post-hoc Bonferroni’s or Dunn’s test).
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Table 1.

Effects of (2R,6R)-HNK on structural

mesencephalic DA neurons.

plasticity

Mouse mesencephalic DA neurons

Dendrite length (um)

Dendrite number

Soma area (um?)

60 min 6 hrs 60 min 6 hrs 60 min 6 hrs
Vehicle | 95.08+3.41 98.25+2.93 1.38£0.08 | 1.46+0.09 | 96.03+2.29 98.28+3.11
0.1 uM | 103.80+4.40 105.40+3.20 1.68+0.09 | 1.82+0.09 | 101.30+4.08 | 110.80+2.99
0.5puM | 112.70+5.02* | 123.80+4.95*** | 1.70+0.10* | 1.9440.11** | 110.90+3.99* | 121.10+4.15***

in mouse

Statistical analysis: 60 min exposure, maximal dendrite length [One-way ANOVA

F(2,87) = 4.14; P<0.05], primary dendrite number [Kruskal-Wallis (2,450) = 7.6,

P<0.05] and soma area [One-way ANOVA F(2,117) = 4.50; P<0.05]; 6 hrs exposure,

maximal dendrite length [One-way ANOVA F(2,87) = 12.00; P<0.0001], primary

dendrite number [Kruskal-Wallis (2,450) = 13.2, P<0.002] and soma area [One-way

ANOVA F(2,117) = 10.90; P<0.0001]. Values are expressed as mean + S.E.M.

(***P<0.001; **P<0.01; *P<0.05 vs. vehicle; post-hoc Bonferroni’s or Dunn’s test).
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Table 2. Effects of (2R,6R)-HNK on structural plasticity in human iPSC-

derived DA neurons.

Human iPSC-derived DA neurons

Dendrite length (um)

Dendrite number

Soma area (um?)

60 min 6 hrs 60 min 6 hrs 60 min 6 hrs
Vehicle | 113.30+3.08 | 112.40+3.02 | 1.46+0.09 1.48+0.08 | 118.40+2.74 117.90+2.35
0.1 uM | 119.20+4.15 | 121.90+3.65 | 1.66+0.11 1.68+0.10 | 123.60+3.70 125.40+3.47
0.5 puM | 128.10+3.57* | 132.0+3.86*** | 1.90+0.11* | 2.02+0.12** | 132.90+4.93* | 136.80+3.85***

Statistical analysis: 60 min exposure, maximal dendrite length [One-way ANOVA

F(2,87) = 4.21; P<0.05], primary dendrite number [Kruskal-Wallis (2,450) = 8.5,

P<0.02]and soma size [One-way ANOVA F(2,117) = 3,54; P<0.05]; 6 hrs exposure,

maximal length of dendrites [One-way ANOVA F(2,87) = 7.75; P<0.0001], number

of primary dendrites [Kruskal-Wallis (2,450) = 11.6, P<0.005] and soma area [One-

way ANOVA F(2,117) = 8.39; P<0.001]. Values are expressed as mean = S.E.M.

(***P<0.001; **P<0.01; *P<0.05 vs. vehicle; post-hoc Bonferroni’s or Dunn’s test).
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