67 research outputs found

    Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Get PDF
    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm

    Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA)

    Get PDF
    The genes PRKACA and PRKACB encode the principal catalytic (C) subunits of protein kinase A (PKA) Cα and Cβ, respectively. Cα is expressed in all eukaryotic tissues examined and studies of Cα knockout mice demonstrate a crucial role for Cα in normal physiology. We have sequenced exon 2 through 10 of PRKACA from the genome of 498 Norwegian donors and extracted information about PRKACA mutations from public databases. We identified four interesting nonsynonymous point mutations, Arg45Gln, Ser109Pro, Gly186Val, and Ser263Cys, in the Cα1 splice variant of the kinase. Cα variants harboring the different amino acid mutations were analyzed for kinase activity and regulatory (R) subunit binding. Whereas mutation of residues 45 and 263 did not alter catalytic activity or R subunit binding, mutation of Ser109 significantly reduced kinase activity while R subunit binding was unaltered. Mutation of Cα Gly186 completely abrogated kinase activity and PKA type I but not type II holoenzyme formation. Gly186 is located in the highly conserved DFG motif of Cα and mutation of this residue to Val was predicted to result in loss of binding of ATP and Mg2+, which may explain the kinetic inactivity. We hypothesize that individuals born with mutations of Ser109 or Gly186 may be faced with abnormal development and possibly severe disease

    The MHV68 M2 Protein Drives IL-10 Dependent B Cell Proliferation and Differentiation

    Get PDF
    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1α. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10−/− B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells—perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis—identifying a strategy that appears to be conserved between at least EBV and MHV68

    Familial factors in early deaths: Twins followed 30 years to ages 51–61 in 1978

    Full text link
    Subjects in the National Academy of Sciences-National Research Council Twin Registry of 31,848 male twin veterans were followed for mortality from 1 January 1946, or from the date of entry into military service if that was later, to 31 December 1978. During this time 3,573 deaths occurred among them, 837 due to trauma and 2,712 due to disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47612/1/439_2004_Article_BF00278852.pd
    • …
    corecore