889 research outputs found

    Modal test of the Viking orbiter

    Get PDF
    A modal test of the Orbiter Development Test Modal (ODTM) has been conducted to verify, or update, the mathematical model used for load analysis. The approach used to assure the quality and validity of the experimental data is defined, the modal test is described, and test results are presented and compared with analysis results. Good correlation between the analyses and the test data assures an acceptable model for incorporation into the mathematical model of the launch system

    Halogen vacancy migration at surfaces of CsPbBr<sub>3</sub>perovskites:Insights from density functional theory

    Get PDF
    Migration of halogen vacancies is one of the primary sources of phase segregation and material degradation in lead-halide perovskites. Here we use first principles density functional theory to compare migration energy barriers and paths of bromine vacancies in the bulk and at a (001) surface of cubic CsPbBr3. Our calculations indicate that surfaces might facilitate bromine vacancy migration in these perovskites, due to their soft structure that allows for bond lengths variations larger than in the bulk. We calculate the migration energy for axial-to-axial bromine vacancy migration at the surface to be only half of the value in the bulk. Furthermore, we study the effect of modifying the surface with four different alkali halide monolayers, finding an increase of the migration barrier to almost the bulk value for the NaCl-passivated system. Migration energies are found to be correlated to the lattice mismatch between the CsPbBr3 surface and the alkali halide monolayer. Our calculations suggest that surfaces might play a significant role in mediating vacancy migration in halide perovskites, a result with relevance for perovskite nanocrystals with large surface-to-volume ratios. Moreover, we propose viable ways for suppressing this undesirable process through passivation with alkali halide salts.</p

    Chemical Mapping of Excitons in Halide Double Perovskites

    Get PDF
    Halide double perovskites are an emerging class of semiconductors with tremendous chemical and electronic diversity. While their bandstructure features can be understood from frontier-orbital models, chemical intuition for optical excitations remains incomplete. Here, we use \textit{ab initio} many-body perturbation theory within the GWGW and the Bethe-Salpeter Equation approach to calculate excited-state properties of a representative range of Cs2_2BB′'Cl6_6 double perovskites. Our calculations reveal that double perovskites with different combinations of B and B′' cations display a broad variety of electronic bandstructures and dielectric properties, and form excitons with binding energies ranging over several orders of magnitude. We correlate these properties with the orbital-induced anisotropy of charge-carrier effective masses and the long-range behavior of the dielectric function, by comparing with the canonical conditions of the Wannier-Mott model. Furthermore, we derive chemically intuitive rules for predicting the nature of excitons in halide double perovskites using electronic structure information obtained from computationally inexpensive DFT calculations

    Mapping Charge-Transfer Excitations in Bacteriochlorophyll Dimers from First Principles

    Full text link
    Photoinduced charge-transfer excitations are key to understand the primary processes of natural photosynthesis and for designing photovoltaic and photocatalytic devices. In this paper, we use Bacteriochlorophyll dimers extracted from the light harvesting apparatus and reaction center of a photosynthetic purple bacterium as model systems to study such excitations using first-principles numerical simulation methods. We distinguish four different regimes of intermolecular coupling, ranging from very weakly coupled to strongly coupled, and identify the factors that determine the energy and character of charge-transfer excitations in each case. We also construct an artificial dimer to systematically study the effects of intermolecular distance and orientation on charge-transfer excitations, as well as the impact of molecular vibrations on these excitations. Our results provide design rules for tailoring charge-transfer excitations in Bacteriochloropylls and related photoactive molecules, and highlight the importance of including charge-transfer excitations in accurate models of the excited-state structure and dynamics of Bacteriochlorophyll aggregates

    Coordination-driven magnetic-to-nonmagnetic transition in manganese doped silicon clusters

    Full text link
    The interaction of a single manganese impurity with silicon is analyzed in a combined experimental and theoretical study of the electronic, magnetic, and structural properties of manganese-doped silicon clusters. The structural transition from exohedral to endohedral doping coincides with a quenching of high-spin states. For all geometric structures investigated, we find a similar dependence of the magnetic moment on the manganese coordination number and nearest neighbor distance. This observation can be generalized to manganese point defects in bulk silicon, whose magnetic moments fall within the observed magnetic-to-nonmagnetic transition, and which therefore react very sensitively to changes in the local geometry. The results indicate that high spin states in manganese-doped silicon could be stabilized by an appropriate lattice expansion

    Pain Management in Patients with Cancer: Focus on Opioid Analgesics

    Get PDF
    Cancer pain is generally treated with pharmacological measures, relying on using opioids alone or in combination with adjuvant analgesics. Weak opioids are used for mild-to-moderate pain as monotherapy or in a combination with nonopioids. For patients with moderate-to-severe pain, strong opioids are recommended as initial therapy rather than beginning treatment with weak opioids. Adjunctive therapy plays an important role in the treatment of cancer pain not fully responsive to opioids administered alone (ie, neuropathic, bone, and visceral colicky pain). Supportive drugs should be used wisely to prevent and treat opioids’ adverse effects. Understanding the pharmacokinetics, pharmacodynamics, interactions, and cautions with commonly used opioids can help determine appropriate opioid selection for individual cancer patients

    Interferon beta 1b following natalizumab discontinuation: one year, randomized, prospective, pilot trial

    Get PDF
    Background: Natalizumab (NTZ) discontinuation leads to multiple sclerosis reactivation. The objective of this study is to compare disease activity in MS patients who continued on NTZ treatment to those who were switched to subcutaneous interferon 1b (IFNB) treatment. Methods: 1-year randomized, rater-blinded, parallel-group, pilot study (ClinicalTrial.gov ID: NCT01144052). Relapsing remitting MS patients on NTZ for ≥12 months who had been free of disease activity on this therapy (no relapses and disability progression for ≥6 months, no gadolinium-enhancing lesions on baseline MRI) were randomized to NTZ or IFNB. Primary endpoint was time to first on-study relapse. Additional clinical, MRI and safety parameters were assessed. Analysis was based on intention to treat. Results: 19 patients (NTZ n=10; IFNB n=9) with similar baseline characteristics were included. 78% of IFNB treated patients remained relapse free (NTZ group: 100%), and 25% remained free of new T2 lesions (NTZ group: 62.5%). While time to first on-study relapse was not significantly different between groups (p=0.125), many secondary clinical and radiological endpoints (number of relapses, proportion of relapse free patients, number of new T2 lesions) showed a trend, or were significant (new T2 lesions at month 6) in favoring NTZ. Conclusions: De-escalation therapy from NTZ to IFNB over 1 year was associated with some clinical and radiological disease recurrence. Overall no major safety concerns were observed
    • …
    corecore