410 research outputs found

    Light-like Wilson loops in ABJM and maximal transcendentality

    Get PDF
    We revisit the computation of the two-loop light-like tetragonal Wilson loop for three dimensional pure Chern-Simons and N=6 Chern-Simons-matter theory, within dimensional regularization with dimensional reduction scheme. Our examination shows that, contrary to prior belief, the result respects maximal transcendentality as is the case of the four-point scattering amplitude of the theory. Remarkably, the corrected result matches exactly the scattering amplitude both in the divergent and in the finite parts, constants included.Comment: 11 page

    The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details

    Get PDF
    We compute the expectation value of the 1/2 BPS circular Wilson loop operator in ABJ(M) theory at two loops in perturbation theory. Our result turns out to be in exact agreement with the weak coupling limit of the prediction coming from localization, including finite N contributions associated to non-planar diagrams. It also confirms the identification of the correct framing factor that connects framing-zero and framing-one expressions, previously proposed. The evaluation of the 1/2 BPS operator is made technically difficult in comparison with other observables of ABJ(M) theory by the appearance of integrals involving the coupling between fermions and gauge fields, which are absent for instance in the 1/6 BPS case. We describe in detail how to analytically solve these integrals in dimensional regularization with dimensional reduction (DRED). By suitably performing the physical limit to three dimensions we clarify the role played by short distance divergences on the final result and the mechanism of their cancellation.Comment: 54 pages, 2 figure

    Multifaceted Quadruplet of Low-Lying Spin-Zero States in Ni 66: Emergence of Shape Isomerism in Light Nuclei

    Get PDF
    A search for shape isomers in the Ni66 nucleus was performed, following old suggestions of various mean-field models and recent ones, based on state-of-the-art Monte Carlo shell model (MCSM), all considering Ni66 as the lightest nuclear system with shape isomerism. By employing the two-neutron transfer reaction induced by an O18 beam on a Ni64 target, at the sub-Coulomb barrier energy of 39 MeV, all three lowest-excited 0+ states in Ni66 were populated and their γ decay was observed by γ-coincidence technique. The 0+ states lifetimes were assessed with the plunger method, yielding for the 02+, 03+, and 04+ decay to the 21+ state the B(E2) values of 4.3, 0.1, and 0.2 Weisskopf units (W.u.), respectively. MCSM calculations correctly predict the existence of all three excited 0+ states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E2 decay from the prolate 04+ to the spherical 21+ state, although overestimating its value. This result makes Ni66 a unique nuclear system, apart from U236,238, in which a retarded γ transition from a 0+ deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior

    Probing Wilson loops in N=4{\cal N}=4 Chern-Simons-matter theories at weak coupling

    Get PDF
    For three-dimensional N=4{\cal N}=4 super Chern-Simons-matter theories associated to necklace quivers U(N0)×U(N1)×U(N2r1)U(N_0) \times U(N_1) \times \cdots U(N_{2r-1}) , we study at quantum level the two kinds of 1/2 BPS Wilson loop operators recently introduced in arXiv:1506.07614. We perform a two-loop evaluation and find the same result for the two kinds of operators, so moving to higher loops a possible quantum uplift of the classical degeneracy. We also compute the 1/4 BPS bosonic Wilson loop and discuss the quantum version of the cohomological equivalence between fermionic and bosonic Wilson loops. We compare the perturbative result with the Matrix Model prediction and find perfect matching, after identification and remotion of a suitable framing factor. Finally, we discuss the potential appearance of three-loop contributions that might break the classical degeneracy and briefly analyse possible implications on the BPS nature of these operators.Comment: 7 pages, 2 figure

    BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis

    Get PDF
    We study a family of circular BPS Wilson loops in N=6 super Chern-Simons-matter theories, generalizing the usual 1/2-BPS circle. The scalar and fermionic couplings depend on two deformation parameters and these operators can be considered as the ABJ(M) counterpart of the DGRT latitudes defined in N=4 SYM. We perform a complete two-loop analysis of their vacuum expectation value, discuss the framing dependence and propose a general relation with cohomologically equivalent bosonic operators. We make an all-loop proposal for computing the Bremsstrahlung function associated to the 1/2-BPS cusp in terms of these generalized Wilson loops. When applied to our two-loop result it reproduces the known expression. Finally, we comment on the generalization of this proposal to the bosonic 1/6-BPS case.Comment: 46 pages, 6 figures; references adde

    Inclusive Universities. Evidence from the Erasmus Program

    Full text link
    The Erasmus Program is the main international mobility program in Europe and worldwide. Since its launch in 1987, it has been growing both in terms of participants and budget devoted to its activities. However, despite the possibility to obtain additional funding, the participation of students with special needs to the program remains extremely low. This work quantifies the participation of these students to Erasmus and explores the network of universities involved in their mobility, along the period 2008-2013. In addition, it proposes a novel index to measure the level of inclusiveness of universities welcoming international students with disabilities. Quantifying and analyzing this aspect could be the basis for better designing targeted policies and for widening the participation of students with impairments to international mobility.Comment: 23 pages, 5 figure

    Gender bias in the Erasmus students network

    Full text link
    The Erasmus Program (EuRopean community Action Scheme for the Mobility of University Students), the most important student exchange program in the world, financed by the European Union and started in 1987, is characterized by a strong gender bias. Girls participate to the program more than boys. This work quantifies the gender bias in the Erasmus program between 2008 and 2013, using novel data at the university level. It describes the structure of the program in great details, carrying out the analysis across fields of study, and identifies key universities as senders and receivers. In addition, it tests the difference in the degree distribution of the Erasmus network along time and between genders, giving evidence of a greater density in the female Erasmus network with respect to the one of the male Erasmus network

    The quantum 1/2 BPS Wilson loop in N=4{\cal N}=4 Chern-Simons-matter theories

    Full text link
    In three dimensional N=4{\cal N}=4 Chern-Simons-matter theories two independent fermionic Wilson loop operators can be defined, which preserve half of the supersymmetry charges and are cohomologically equivalent at classical level. We compute their three-loop expectation value in a convenient color sector and prove that the degeneracy is uplifted by quantum corrections. We expand the matrix model prediction in the same regime and by comparison we conclude that the quantum 1/2 BPS Wilson loop is the average of the two operators. We provide an all-loop argument to support this claim at any order. As a by-product, we identify the localization result at three loops as a correction to the framing factor induced by matter interactions. Finally, we comment on the quantum properties of the non-1/2 BPS Wilson loop operator defined as the difference of the two fermionic ones.Comment: 22 pages + appendixes, 4 figures, 1 Tabl

    Aging and IoT: Developing Innovative Solutions in a Quadruple Helix Approach

    Get PDF
    The paper investigates, through the use of a case study, how local firms can promote technological advancements in a very specific field, such as the one of ICT and IoT applied to the care of elderly people, benefiting from relationships with institutions, enterprises, universities and users in a Quadruple Helix Model. The firm selected, which is launching innovative solutions and systems of connected care and wellness, provides evidence on how technological improvement can flourish if a collaborative approach is followed

    ABJM amplitudes and WL at finite N

    Get PDF
    We evaluate ABJM observables at two loops, for any value of the rank N of the gauge group. We compute the color subleading contributions to the four-point scattering amplitude in ABJM at two loops. Contrary to the four dimensional case, IR divergent N-subleading contributions are proportional to leading poles in the regularization parameter. We then exploit the non-planar calculation for the amplitude to derive an expression for the two-loop Sudakov form factor at any N. In the planar limit the result coincides with the one recently obtained in literature by using Feynman diagrams and unitarity. Finally, we analyze the subleading contributions to the light-like four-cusps Wilson loop and interpret the result in terms of the non-abelian exponentiation theorem. All these perturbative results satisfy the uniform transcendentality principle, hinting at its validity in ABJM beyond the planar limit.Fil: Bianchi, Marco. Humboldt-Universität zu Berlin; AlemaniaFil: Leoni, Marta. Universita Degli Studi Di Milano; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Leoni Olivera, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mauri, Andrea. Universita Degli Studi Di Milano; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Penati, Silvia. Universita Degli Studi Di Milano; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Santambrogio, Alberto. Istituto Nazionale di Fisica Nucleare; Itali
    corecore