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For three-dimensional N = 4 super-Chern–Simons-matter theories associated to necklace quivers 
U (N0) × U (N1) × · · · U (N2r−1), we study at quantum level the two kinds of 1/2 BPS Wilson loop op-
erators recently introduced in arXiv:1506.07614. We perform a two-loop evaluation and find the same 
result for the two kinds of operators, so moving to higher loops a possible quantum uplift of the classical 
degeneracy. We also compute the 1/4 BPS bosonic Wilson loop and discuss the quantum version of the 
cohomological equivalence between fermionic and bosonic Wilson loops. We compare the perturbative 
result with the Matrix Model prediction and find perfect matching, after identification and remotion of 
a suitable framing factor. Finally, we discuss the potential appearance of three-loop contributions that 
might break the classical degeneracy and briefly analyze possible implications on the BPS nature of these 
operators.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the most interesting classes of observables in supersym-
metric gauge theories is constituted by BPS Wilson loops [1,2]. 
They provide an exciting arena where exact computations can 
be performed through localization techniques [3], so interpolating 
non-trivially between weak and strong coupling regimes.

The first and most famous example is the 1/2 BPS circular Wil-
son loop, originally constructed in N = 4 super-Yang–Mills theory. 
It is calculated by a simple Gaussian matrix model and reproduced 
at strong coupling through the AdS/CFT correspondence [1,2]. The 
original proposal has been generalized to less supersymmetric 
loops [4] and in theories with N = 2 supersymmetry [3]. In all 
these constructions the key point is to improve the holonomy of 
the gauge connection by coupling some of the scalar fields to the 
appropriate contours. The resulting operators are BPS and their ex-
pectation values can be computed by adding a suitable Q-exact
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term to the classical action, so that the relevant path-integral is 
semiclassically exact [3].

In three dimensions the story is a little bit different. N = 2
Chern–Simons theories still possess circular 1/2 BPS Wilson loops 
obtained through scalar couplings, which are calculated by local-
ization techniques [5]. Going to more supersymmetric theories, as 
the N = 6 ABJ(M) model, the construction of 1/2 BPS operators 
has to be refined [6] (see also [7] for a generalization to other 
contours). In fact, scalar couplings only provide 1/6 BPS Wilson 
loops and fermionic couplings have to be invoked to enhance su-
persymmetry. More surprisingly, 1/2 BPS Wilson loops in ABJ(M) 
theory are seen equivalent to a linear combination of 1/6 BPS ones 
[6,8]. In fact, they belong to the same cohomology class of the 
localizing supercharge and thus, up to framing anomalies, they 
are the same observable at quantum level. This phenomenon is 
a three-dimensional novelty, that has been checked concretely in 
perturbation theory [13,14] and certainly needs a more profound 
investigation. Recently, the construction of 1/2 BPS Wilson loops 
has been presented [9,10] in N = 4 quiver Chern–Simons theo-
ries [11,12]. In the case of circular and linear quivers with non-
vanishing CS levels, two apparently independent 1/2 BPS circular 
loops emerge, which share the same supersymmetry and belong 
to the same cohomology class of the familiar bosonic 1/4 Wilson 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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loop operator. These properties have been derived at classical level 
and should be checked against truly quantum computations, where 
divergences and/or anomalies could arise, possibly lifting the clas-
sical degeneracy.

In this paper we perform explicitly a perturbative computation 
of the two fermionic Wilson loops at second order in the coupling 
constant, finding perfect consistency with the classical picture and 
no lifting of the quantum expectation value. At the same order we 
check the matrix model result obtained from the localization pro-
cedure and, consequently, confirm the cohomological equivalence 
with the 1/4 BPS loop. The plan of our Letter is the following. 
In Section 2 we briefly recall the construction of the Wilson loop 
operators in N = 4 circular Chern–Simons quivers. Section 3 is de-
voted to the perturbative computation of the expectation value of 
the relevant Wilson loop operators. In Section 4 we check their 
cohomological equivalence at quantum level. Matrix model results 
are explicitly seen to be consistent with our quantum calculations 
in Section 5. A critical analysis of the degeneracy problem is pre-
sented in Section 6, where we discuss the potential appearance of 
higher-order contributions that might turn out to be different for 
the two fermionic Wilson loops.

2. Circular BPS Wilson loops in N = 4 CS-matter theories

We consider a Chern–Simons-matter theory associated to a 
circular quiver with gauge group U (N0) × U (N1) × · · · U (N2r−1)

(N2r ≡ N0). Besides the gauge sector containing vectors Aμ
(A)

in 
the adjoint representation of the group U (N A), the theory con-

tains matter scalars (qI
(2A+1))

j

ĵ
((q̄(2A+1)I )

ĵ
j ) in the (anti)bifun-

damental representation of the U (N2A+1), U (N2A+2) nodes (in-
dices j and ĵ, respectively) and in the fundamental of the R-

symmetry SU(2)L (I = 1, 2), twisted scalars (qÎ
(2A))

ĵ
j ((q̄

(2A) Î )
j

ĵ
) 

in the (anti)bifundamental representation of U (N2A), U (N2A+1)

nodes and in the fundamental of the R-symmetry SU(2)R ( Î =
1, 2), plus the corresponding fermions (ψ

(2A+1) Î )
j

ĵ
((ψ̄ Î

(2A+1))
ĵ
j) 

and (ψ(2A)I )
ĵ
j ((ψ̄ I

(2A))
j

ĵ
), respectively.

In three-dimensional euclidean space the classical action reads

S =
2r−1∑
A=0

(
S(A)

CS + S(A)
mat

)
+ Spot + S g f (1)

where

S(A)
CS = − i

2
kA

∫
d3xεμνρTr

(
A(A)μ∂ν A(A)ρ

+2

3
i A(A)μ A(A)ν A(A)ρ

)
S(A)

mat =
∫

d3x Tr
[

Dμq(A)Dμq̄(A) + i ψ̄(A)γ
μDμψ(A)

]
(2)

while S g f is the gauge-fixing plus ghost action and Spot the mat-
ter interaction action, whose explicit expression can be found for 
instance in [18]. This part of the action does not enter two-loop 
diagrams, so we will ignore it in the rest of the paper.

N = 4 supersymmetry requires the CS levels to satisfy

kA = k

2
(sA − sA−1), sA = ±1, k > 0 (3)

We will consider the case sA = (−1)A+1, which leads to alternating 
∓k levels.

In [9,10] Wilson loop operators (WL) have been introduced that 
are classically BPS. These are defined locally for each site of the 
quiver and involve at most three adjacent nodes. Therefore, re-
stricting for simplicity to node U (N1) and its nearest-neighbor
U (N0) and U (N2) we will consider the following loop operators 
integrated on the unit circle � (xμ = (cosτ , sinτ , 0), τ ∈ [0, 2π ]):

Fermionic 1/2 BPS ψ1-Wilson loop. When referred to node U (N1)

it is defined as [10]1

Wψ1 [�] = Tr P exp

⎛
⎝−i

∫
�

dτLψ1
F (τ )

⎞
⎠ (4)

where

Lψ1
F =

(
A(1) c̄αψα

(1)1̂

cαψ̄ 1̂
(1)α A(2)

)
(5)

A(1) = ẋμ A(1)μ − i

k

(
qI
(1)δ

J
I q̄(1) J + q̄

(0) Î(σ3)
Î
Ĵ

q Ĵ
(0)

)

A(2) = ẋμ A(2)μ − i

k

(
q̄(1)Iδ

I
J q J

(1) + qÎ
(2)(σ3)

Ĵ

Î
q̄
(2) Ĵ

)
and the commuting spinors c, c̄ are (with CC̄ = − i

k )

c(τ ) = C(cos τ
2 − sin τ

2 , cos τ
2 + sin τ

2 )

c̄(τ ) = C̄

(
cos τ

2 − sin τ
2

cos τ
2 + sin τ

2

)
(6)

Fermionic 1/2 BPS ψ2-Wilson loop. This loop operator is defined 
as [10]

Wψ2 [�] = Tr P exp

⎛
⎝−i

∫
�

dτLψ2
F (τ )

⎞
⎠ (7)

where

Lψ2
F =

(
A(1) c̄αψα

(1)2̂

cαψ̄ 2̂
(1)α A(2)

)
(8)

A(1) = ẋμ A(1)μ − i

k

(
−qI

(1)δ
J

I q̄(1) J + q̄
(0) Î (σ3)

Î
Ĵ

q Ĵ
(0)

)

A(2) = ẋμ A(2)μ − i

k

(
−q̄(1)Iδ

I
J q J

(1)
+ qÎ

(2)(σ3)
Ĵ

Î
q̄
(2) Ĵ

)
and the commuting spinors c, c̄ given by (with CC̄ = i

k )

c(τ ) = −C(cos τ
2 + sin τ

2 ,− cos τ
2 + sin τ

2 )

c̄(τ ) = C̄

(
cos τ

2 + sin τ
2− cos τ

2 + sin τ
2

)
(9)

This loop differs from the previous one for the replacement of the 
identity matrix with minus the identity matrix in the scalar cou-

plings, the replacement ψ 1̂
(1) → ψ 2̂

(1) in the off-diagonal elements 
and the choice of different fermion couplings.

Bosonic 1/4 BPS Wilson loop. We will be also interested in bosonic 
loop operators that respect 1/4 of the original supersymmetries [9,
10]. For sites N1 and N2 they are

1 For simplicity, we define Wilson loops without any normalization factor.
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W (1)[�] = Tr P exp

⎛
⎝−i

∫
�

dτL(1)
B (τ )

⎞
⎠

W (2)[�] = Tr P exp

⎛
⎝−i

∫
�

dτL(2)
B (τ )

⎞
⎠ (10)

where

L(1)
B = ẋμ A(1)μ − i

k

(
q̄
(0) Î(σ3)

Î
Ĵ
q Ĵ
(0) + qI

(1)(σ3)
J

I q̄(1) J

)
L(2)

B = ẋμ A(2)μ − i

k

(
q̄(1)I(σ3)

I
J q J

(1) + qÎ
(2)(σ3)

Ĵ

Î
q̄
(2) Ĵ

)
As proved in [9,10] the fermionic Wilson loops are classically 

equivalent to the bosonic ones,

Wψi = W (1) + W (2) + Q Vψi i = 1,2 (11)

up to a Q -term, where Q is some linear combination of super-
charges. If this cohomological equivalence survives at quantum 
level, localization techniques applied to the bosonic Wilson loops 
provide an all-order prediction also for the fermionic operators. For 
the ABJM orbifold case (Ni ≡ N for any i) the corresponding matrix 
model has been computed in [17].

3. Two-loop evaluation

In this Section, we present the results for the circular 1/2 BPS 
and 1/4 BPS WL up to two loops. The computation, that requires 
regularizing UV divergences and evaluating intricate trigonometric 
integrals, heavily relies on the techniques introduced in [13,14] to 
which we refer for details.

We use dimensional regularization with dimensional reduction 
(DRED) to control potentially divergent integrals. They generally 
converge in the complex half-plane defined by some critical value 
of the real part of the regularization parameter ε . Using tech-
niques described in [13], they can be computed analytically for any 
complex value of ε and turn out to be expressible in terms of hy-
pergeometric functions. Their actual value for ε → 0 can be then 
obtained by analytically continuing the hypergeometric functions 
close to the origin and expanding the result up to finite terms.

At one-loop we have only two contributions associated with 
the exchange of one gluon and one fermion line, respectively. The 
vector exchange vanishes because of the planarity of the circular 
contour that gets contracted with the Levi-Civita tensor. The con-
tribution from the fermion exchange is proportional to

2π∫
0

dτ1

τ1∫
0

dτ2
(c1γ

μc̄2) (x1 − x2)μ

[(x1 − x2)2] 3
2 −ε

(12)

Choosing the set of euclidean gamma matrices γ μ = {σ 3, σ 1, σ 2}, 
and taking into account the explicit expression of fermion cou-
plings (6) we can write

(ciγ
μc̄ j)(xi − x j)μ = − 4i

k sin τ1−τ2
2 (13)

Therefore, the integral becomes

∫
dτ1>2

1

[sin2 τ12
2 ]1−ε

=
2π3/2�

(
− 1

2 + ε
)

� (ε)
(14)

and this expression vanishes in 3d. Therefore, we do not have any 
one-loop contribution to Wψ1 .
Fig. 1. Non-vanishing two-loop diagrams for ψ1 and ψ2 loops. Wavy lines repre-
sent gauge propagators, solid lines represent scalars, and dashed lines are fermion 
propagators. Bubbles represent one-loop corrections to the propagators, as given in 
Appendix.

We then move to two loops. Contributions that are not trivially 
vanishing for planarity of the contour are associated to the dia-
grams in Fig. 1. We list the results for each single diagram, while 
for details we refer the reader to [13,14].

Diagram (a) – It comes from the gauge part of the third order 
expansion of the WL contracted with the gauge cubic vertex. Sum-
ming the contributions from the two connections A(1) and A(2) , 
we have

(a)ψ1
= −

[
N1(N2

1 − 1) + N2(N2
2 − 1)

] 1

k2

�3( 3
2 − ε)

8π
9
2 −3ε

I(a) (15)

where

I(a) =
∫

dτ1>2>3 ẋσ
1 ẋη

2 ẋζ
3 εξτκεσξμεητνεζκρ ×∫

d3−2εx
(x − x1)

μ(x − x2)
ν(x − x3)

ρ

|x − x1|3−2ε |x − x2|3−2ε |x − x3|3−2ε
(16)

This integral, being finite, can be computed at ε = 0 and eventually 
gives I(a) = 8

3 π3 [13,15]. The final result is then

(a)ψ1
= − 1

24

N1(N2
1 − 1) + N2(N2

2 − 1)

k2
(17)

Diagrams (b) + (c) – Summing the two contributions we obtain

[(b) + (c)]ψ1 =[
N2

1(N0 + N2) + N2
2(N1 + N3)

] 1

k2

�2( 1
2 − ε)

8π3−2ε
I(b+c) (18)

where [15]

I(b+c) =
∫

dτ1>2
−ẋ1 · ẋ2 + |ẋ1||ẋ2|
[(x1 − x2)2]1−2ε

−→
ε→0

π2 (19)

We then obtain

[(b) + (c)]ψ1 =
[

N2
1(N0 + N2) + N2

2(N1 + N3)
] 1

2
(20)
8k
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Diagram (d) – This contribution is proportional to the exchange of 
a one-loop fermion propagator. Using its explicit expression given 
in [13] we obtain

(d)ψ1
∼

∫
dτ1>2

|ẋ1||ẋ2|
[(x1 − x2)2]1−2ε

[(c1c̄2) − (c2c̄1)] (21)

where we indicate ci ≡ c(τi) on the circle. As follows from eq. (6)
we have

(ci c̄ j) = − 2i
k cos

τi−τ j
2 (22)

so that diagram (d) vanishes identically.

Diagram (e) – Expanding the ψ1-loop at forth order and perform-
ing the two possible contractions of fermions we obtain a linear 
combination of terms of the form

�2( 3
2 − ε)

4π3−2ε

∫
dτ1>..>4

(ciγ
μc̄ j)(ckγ

ν c̄l)(xi − x j)μ(xk − xl)ν

[(xi − x j)
2(xk − xl)

2] 3
2 −ε

(23)

This expression can be easily elaborated by using identity (13)
twice. The contour integrals we are left with are divergent. They 
can be evaluated away from ε = 0 and suitably continued close to 
the origin (see [13] for details). The result is

(e)ψ1
= 3

8

N2
1 N2 + N2

2 N1

k2
(24)

Diagram (f) – Expanding Wψ1 at third order and contracting with 
one mixed vertex ψ̄ψ A coming from the action, we obtain the 
linear combination of six integrals of the form

1

k

�3( 1
2 − ε)

64π
9
2 −3ε

∫
dτ1>2>3(c̄iγ

ξγ μγ σ c j) ẋν
k ε

ρ
νμ �ρξσ (25)

where the labels i, j, k run over 1, 2, 3 and

�μνρ = ∂
μ
k ∂ν

i ∂
ρ
j

∫
d3x

[(x − x1)2(x − x2)2(x − x3)2] 1
2 −ε

The spinorial structure appearing in (25) can be simplified by using 
standard identities for the product of three Pauli matrices. It is 
easy to prove that, because of the planarity of the contour the only 
non-vanishing contributions we are left with are proportional to 
the bilinears (ci c̄ j) and (ciγ

3c̄ j). Using identity (22) together with

(ciγ
3c̄ j) = 2

k sin τ1−τ2
2 , (26)

computing the corresponding color factors and evaluating the in-
tegrals using the procedure described in [13] we finally obtain

(f)ψ1
= −1

2

N2
1 N2 + N2

2 N1

k2
(27)

Summing all the contributions the two-loop result for the 
ψ1-loop is

〈Wψ1 [�]〉|2loop = (N1 + N2) ×[
1 − 1

24k2

(
(N2

1 + N2
2 − N1N2 − 1) − 3

N0N2
1 + N3N2

2

N1 + N2

)]
(28)

We now consider the Wilson loop Wψ2 defined in (8), (9). 
Its perturbative evaluation can be easily performed by exploiting 
the previous results, where we should take into account that the 
ψ2-loop has slightly different scalar couplings in the A-terms and 
different fermionic couplings c, c̄. The fact that the ψ ˆ fermion 
(1)2
replaces ψ
(1)1̂ does not make much difference, as the tree-level 

propagator for the two fermionic components is the same.
At one loop, the fermion exchange diagram (see equation (12)) 

involves the bilinear (ciγ
μc̄ j)(xi − x j)μ . Computing it with the as-

signment (9), we obtain the same result (13) up to an overall sign. 
However, since the diagram is still proportional to integral (14), 
the ψ2-loop contribution at one loop also vanishes in the ε → 0
limit.

At two loops, non-vanishing contributions are still given in 
Fig. 1. It is easy to argue that the first three bosonic diagrams give 
the same result as Wψ1 . In fact, diagram (a) and (b) involve only 
gauge fields, so they are insensitive to changes in matter couplings. 
In diagram (c) the matrices (I and σ3) governing the scalar cou-
plings enter quadratically, so that the sign difference between the 
two WL definitions does not affect the calculation. Changes in the 
calculation might be expected from diagrams containing fermions, 
since a different set of fermionic couplings may give rise to dif-
ferent expressions for the fermionic bilinears (ci c̄ j) and (ciγ

μc̄ j). 
However, the contribution from diagram (d) is still proportional to 
expression (21) and vanishes since, as before, (c1c̄2) = (c2c̄1), as 
follows immediately from (9). In diagram (e) the double fermion 
contractions read again as in eq. (23), which involves the bilinear 
(ciγ

μc̄ j)(xi − x j)μ . As we already mentioned, this bilinear has an 
overall sign compared to the corresponding expression for Wψ1 . 
However, in (23) the product of two such expressions appears, so 
that the final result is the same as for Wψ1 . Finally, diagram (f) 
only involves minimal coupling of fermions to the gauge vectors, 
which is identical for ψ

(1)1̂ and ψ
(1)2̂ . Therefore the evaluation 

of the integrals still depends on the spinorial bilinears (ci c̄ j) and 
(ciγ

3c̄ j). Using (9), these can be quickly shown to be identical to 
the ones for the ψ1-loop. Here it is crucial that, due to the pla-
narity of the contour, only the bilinear (ciγ

μc̄ j) with μ = 3 enters 
the calculation. If this were not the case, we would obtain a dif-
ferent result, since for the bilinears along the directions μ = 1, 2
where the circular contour lies there is a sign difference between 
the two WL.

Summarizing, we find that

〈Wψ1 [�]〉|2loop = 〈Wψ2 [�]〉|2loop (29)

Therefore, up to this order, there is no quantum uplift of the de-
generacy between the two fermionic WL.

Exploiting the previous calculation, it is also immediate to de-
termine the 1/4 bosonic WLs (10). Again, there is no one-loop 
contribution, while the two-loop ones are given by the first three 
diagrams in Fig. 1. With suitable adjustments we find (A = 1, 2)

〈W (A)〉
N A

= 1 − 1

24k2

[
N2

A − 3N A−1N A − 3N A N A+1 − 1
]

(30)

Note that, under identification N0 = N2 and N3 = N1, our results 
(28), (30) coincide with the two-loop expressions for the 1/2 and 
1/6 Wilson loops in ABJ, respectively [6,13–15]. Moreover, in the 
orbifold ABJM [U (N) ×U (N)]r (N A = N for all the nodes) the result 
becomes

〈Wψ1〉
2N

∣∣∣
2loop

= 〈Wψ2〉
2N

∣∣∣
2loop

= 1 + 1

24k2

(
2N2 + 1

)
∼ 1 + 1

12

(
N

k

)2

〈W (1,2)〉
N

∣∣∣
2loop

= 1 + 1

24k2

(
5N2 + 1

)
∼ 1 + 5

24

(
N

k

)2

(31)
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4. Cohomological equivalence at quantum level

It is easy to generalize the results (28) to a generic A site (A =
0, · · · , 2r − 1) and write

〈W (A)
ψi

〉|i=1,2

N A + N A+1
= 1 − 1

24k2

[
N2

A + N2
A+1 − N A N A+1 − 1

−3
N A−1N2

A + N A+2N2
A+1

N A + N A+1

]
+ · · · (32)

Similarly, generalizing result (30), for bosonic WL related to the A
site we have

〈W (A)〉
N A

= 1 − 1

24k2

[
N2

A − 3N A−1N A − 3N A N A+1 − 1
]
+ · · ·

(33)

Exploiting these results it is interesting to understand how the 
classical cohomological equivalence (11) gets enhanced at quantum 
level. In fact, comparing the previous expressions one can easily 
realize that the following identity holds

〈W (A)
ψi

〉0 = e−i
�A
2k (N A−N A+1) ×[

ei
�A
2k N A 〈W (A)〉0 + e−i

�A
2k N A+1〈W (A+1)〉0

]
(34)

where �A = (−1)A+1 and the subscript “0” means perturbative 
result (framing zero). Therefore, if we define “framing-one” quan-
tities

〈W (A)
ψi

〉1 = ei
�A
2k (N A−N A+1) 〈W (A)

ψi
〉0 j = 1,2

〈W (A)〉1 = e−i
�A
2k N A 〈W (A)〉0 (35)

the previous identity can be rewritten as

〈W (A)
ψi

〉1 = 〈W (A)〉1 + 〈W (A+1)〉1 (36)

and looks exactly like the classical relation (11).

5. Matrix model result at weak coupling

We now discuss the matrix model for the necklace quiver theory 
described in Section 2. The putative matrix integral, which yields 
the partition function, can be easily obtained by combining the 
basic building blocks given in [5]. We find [16]

Z = N
∫ ∏

B,i

dλBie
2ik�Bλ2

Bi

2r−1∏
B=0

∏
i< j sinh2 (

λBi − λB j
)

∏
i, j cosh

(
λBi − λB+1, j

) (37)

The constant N is an overall normalization, whose explicit form is 
irrelevant in our computation.

In the matrix model language the 1/2 BPS Wilson loop is not 
a fundamental object, as it can be computed from the 1/4 BPS 
Wilson loop through the cohomological relation (36). Therefore we 
focus on the latter. It is given by the vacuum expectation value of 
the following matrix observable

W (A) =
N A∑
i=1

e2λAi = N A + 2Tr(�A) + 2Tr(�2
A) +

+ 4

3
Tr(�3

A) + 2

3
Tr(�4

A) + O
(
�5

A

)
(38)

where we have introduced the diagonal matrix �A ≡ diag(λA1, · · · ,

λAN A ) for future convenience. In the r.h.s. of (38) we can actually 
neglect all the odd powers in �A since their expectation value 
vanishes at all order in 1
k due to the symmetry property of the 

integrand in (37) under the parity transformation λAi → −λAi .
In order to construct the perturbative series for W (A) , first we 

rescale the eigenvalues λAi with 1√
k

. Therefore, the measure factor 
for large k reads

2r−1∏
B=0

∏
i< j sinh2 λBi−λB j√

k∏
i, j cosh

λBi−λB+1, j√
k

=
[

1 + 1

k

2r−1∑
B=0

P B + O

(
1

k2

)]
2r−1∏
B=0

∏
i< j

(λBi − λB j)
2

k
(39)

where

P B ≡ 1

3
(NB Tr(�2

B) − Tr(�B)2) − 1

2
(NB+1Tr(�2

B) +
+ NB Tr(�2

B+1) − 2Tr(�B)Tr(�B+1)). (40)

Since we shall write the final result as a combination of vacuum 
expectation values in the Gaussian matrix model, we have chosen 
to use the usual Vandermonde determinant as the reference mea-
sure. Moreover we have not explicitly written 1

k2 terms since they 
do not affect the final result. In fact, they cancel out with the nor-
malization provided by the partition function.

With the help of the expansion (39), it is straightforward to 
write down the expectation value of the Wilson loop W (A) in 
terms of P B and �A . We find

〈W (A)〉 = N A + 2

k
〈Tr(�2

A)〉 + 1

k2

[
2

3
〈Tr(�4

A)〉 +

+ 2
2r−1∑
B=0

[
〈Tr(�2

A)P B〉 − 〈Tr(�2
A)〉〈P B〉

]]
+ O

(
1

k3

)
,

(41)

where all the expectation values in the r.h.s. of eq. (41) are taken 
in Gaussian matrix model of coupling constant (−2i�B). At the 
order 1

k2 the effect of the interactions is entirely encoded in the 
combination 〈Tr(�2

A)P B〉 − 〈Tr(�2
A)〉〈P B〉. However this combina-

tion vanishes unless B = A − 1 or B = A and thus the Wilson loop 
receives contributions from the nodes A − 1, A and A + 1 (we re-
call that P B also depends on �B+1). This is similar to what occurs 
in ABJ theories with the difference that the node A − 1 and A + 1
are identified there.

Using known results on the expectation values of Tr(�n) and on 
correlators of traces in the Gaussian matrix model, we finally find

〈W (A)〉
N A

= 1 + i�A N A

2k
−

− 1

24k2
(4N2

A −3N A−1N A −3N A+1N A − 1)+ O

(
1

k3

)
(42)

This expression coincides with the perturbative result for 1/4 BPS 
Wilson loop given in (30) dressed with the phase (35) correspond-
ing to framing 1. With the help of cohomological relation (36), we 
can also build 〈W (A)

ψi
〉 and we find again the same result (32) of 

the perturbative computation.

6. Discussion and perspectives

We have studied the two-loop perturbative behavior of the 1/2 
BPS Wilson loop operators Wψ1 and Wψ2 introduced in [9,10] in 
the case of N = 4 Chern–Simons matter quiver theories with al-
ternating levels.
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Fig. 2. Example of a three-loop diagram yielding different results for Wψ1 and Wψ2 .

The Feynman diagram analysis of Section 3 has shown that up 
to two loops the expectation values of Wψ1 and Wψ2 are coin-
cident and match the prediction from the perturbative expansion 
of the matrix model obtained in Section 4. Remarkably, in the field 
theory computation the coincidence between the two Wilson loops 
is true not only for the full result but it holds also for each of the 
contributing diagrams. At this perturbative order the two Wilson 
loops share exactly the same properties. We thus have to go up to 
three loops to look for hints of a possible lifting of the degeneracy 
between the two classically equivalent 1/2 BPS operators.

Indeed, at three loops some distinctive features in the pertur-
bative computation arise. First of all, at this order the two Wilson 
loops start giving different results at the level of single diagrams. 
It is easy to find examples of this behavior and we provide the 
simplest one in Fig. 2.

Evaluating the diagram for the two Wilson loops we obtain

Wψ2 |Fig. 2 = −Wψ1 |Fig. 2 (43)

with

Wψ1 |Fig. 2 = − 2

k3
N1N2(N2

1 + N2
2 + 2) I(ε)

I(ε) = 4

3
�

(
− 1

2 + 3ε
)[

�( 1
2 − ε)�(1 + ε)

(4π)1−ε�(1 + 2ε)

]3

−→
ε→0

− 1

24π
(44)

The extra minus sign in Wψ2 compared to Wψ1 comes from the 
different scalar couplings in the two Wilson loop definitions. This 
situation is very similar to what happens for the one-loop fermion 
exchange contribution of Section 3. However, while in that case 
the diagram is eventually discarded because the integral has been 
shown to be O(ε), in the present case a finite contribution sur-
vives in the ε → 0 limit.

Another source of possible differences might come from the 
Yukawa vertices in the potential, which start contributing at three 
loops. In fact, while minimal couplings entering up to two loops 
are diagonal in the flavor space, Yukawa vertices are in general fla-
vor changing and the computation might become sensible to the 
flavor choice of the spinor insertions on the contour.

Based on these general observations, we expect a different re-
sult for a subset of three-loop Feynman diagrams and it would be 
crucial to check if the differences are compensated when we sum 
over all the contributions. If this were the case, the common result 
of the two operators should match the three-loop expansion of the 
matrix model. Instead, if the differences would not cancel against 
each others, and cannot be absorbed in a change of framing, the 
prediction from the matrix model could be matched only by a spe-
cific linear combination of the two Wilson loops, as suggested in 
[10]. A more radical possibility is that no linear combination satis-
fies the constraint and therefore the cohomological equivalence is 
broken at the quantum level. We will report on the ongoing three-
loop analysis in [19].

Moreover, it would be interesting to understand how the Wψi

operators of the N = 4 models fit in the family of 1/2 BPS Wilson 
loops recently introduced [20] for general N = 2 theories, where 
a perturbative analysis such as the one completed in this paper 
could also be applied.
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