19 research outputs found

    Précipitations en Antarctique : de leur observation par télédétection à leur représentation dans un modÚle de climat global.

    No full text
    Antarctica is an immense continent made of ice. This region remains to this day one of the most unknown regions of our planet Earth. It contains nearly 90% of the world's fresh water, and in the current situation of global warming, this frozen reservoir is under serious threat. In the absence of reliable observations or efficient climate models, it is so far difficult to verify what is happening in Antarctica, and how it may evolve in the coming decades. Indeed, some studies predict significant ice melt in the west, other studies predict snow accumulation at the surface of its eastern region, mostly by precipitation events. It is, however, difficult to know if one of these two processes takes priority over the other, and which one.The CloudSat satellite is the only precipitation survey tool available on the continental scale. However, there are significant uncertainties about its measurements and the confidence that can be given to it is inevitably very low. Using precisely calibrated radar instruments deployed on the Dumont d'Urville coast station and the Princess Elisabeth continental station, we compared observations of precipitation from both surface and space. Comparison of these observations between the two datasets allowed to validate the satellite's precipitation measurements by re-evaluating an uncertainty on the measurement -- initially between 150 and 250% -- to less than 24%.This result gives more confidence to the measurements of this satellite, and from four years of continuous precipitation observation, we have developed the first three-dimensional and model-independent climatology of snowfall in Antarctica. Comparison of this dataset with theoretical precipitation rates calculated from the forced uplift of an air mass along a topographic slope shows that snowfall appears to be controlled at the first order by large-scale advection and forced uplift of wet flows against topography.We compared this dataset to the global climate model LMDz to assess its capability to represent precipitation over this polar region. Using several simulation configurations, we identified dynamic, warm and moist biases as well as biases in the moisture advections of the model. We have explored ways to reduce these biases, such as the use of atmospheric forcings (winds, temperature and specific humidity) or the sensitivity of microphysical precipitation parameters. In addition, a combination of forcing and numerical adjustment reducing the dissipation of the LMDz model on diabetic perturbations allows precipitation to be simulated in accordance with the available observations.L’Antarctique est un immense continent constituĂ© de glace. Cette rĂ©gion reste Ă  ce jour l’une des contrĂ©es les plus mĂ©connues de notre planĂšte Terre. On y retrouve prĂšs de 90% de l’eau douce globale, et dans la rĂ©alitĂ© actuelle du rĂ©chauffement climatique, ce rĂ©servoir, que l’on pensait figĂ© jusque lĂ , est menacĂ©. Cependant, faute d’observations fiables ou de modĂšles climatiques performants, il est difficile jusqu’à prĂ©sent de savoir quelle Ă©volution l’Antarctique va avoir dans les dĂ©cennies Ă  venir. En effet, si des Ă©tudes prĂ©disent une importante fonte de glace Ă  l’Ouest, d’autres Ă©tudes prĂ©disent une accumulation de neige Ă  la surface de sa rĂ©gion Est. Il est difficile de savoir lequel de ces deux processus prime sur l’autre, et dans quel sens. Le satellite CloudSat est le seul outil d’étude des prĂ©cipitations disponible Ă  l’échelle du continent. Cependant, les incertitudes sur ses mesures Ă©taient importantes. À l’aide des instruments radars prĂ©cisĂ©ment calibrĂ©s qui sont dĂ©ployĂ©s sur la station cĂŽtiĂšre de Dumont d’Urville et sur la station continentale de Princesse Elisabeth, nous avons comparĂ© des observations de prĂ©cipitations simultanĂ©ment observĂ©es depuis la surface et depuis l’espace. La comparaison de ces observations entre les deux jeux de donnĂ©es a permis de valider les mesures de prĂ©cipitations du satellite en rĂ©-Ă©valuant une incertitude sur la mesure – initialement comprise entre 150 et 250% – Ă  moins de 24%. Dans un second temps, Ă  partir des quatre annĂ©es d’observation continue de prĂ©cipitations effectuĂ©es par CloudSat, nous avons dĂ©veloppĂ© la premiĂšre climatologie tri-dimensionnelle et indĂ©pendante de tout modĂšle des chutes de neige en Antarctique. La comparaison de ce jeu de donnĂ©es avec des taux de prĂ©cipitations thĂ©oriques calculĂ©s Ă  partir du soulĂšvement forcĂ© d’une masse d’air le long d’une pente topographique montre que les chutes de neige semblent contrĂŽlĂ©es au premier ordre par l’advection Ă  large Ă©chelle et l’ascendance forcĂ©e des flux humides Ă  l’encontre de la topographie de la calotte. Nous avons comparĂ© ce jeu de donnĂ©es au modĂšle de climat global LMDz afin d’évaluer la capacitĂ© de ce dernier Ă  reprĂ©senter les prĂ©cipitations au-dessus de l’Antarctique. À l’aide de plusieurs configurations de simulations, nous avons identifiĂ© des biais dynamiques, chauds et humides ainsi que des biais dans les advections d’humiditĂ© du modĂšle. Nous avons explorĂ© des solutions pour rĂ©duire ces biais, comme l’utilisation du guidage des champs dynamiques ou la sensibilitĂ© des paramĂštres microphysiques des prĂ©cipitations. Finalement un guidage dynamique et un rĂ©glage numĂ©rique rĂ©duisant la dissipation du modĂšle LMDz sur les perturbations diabatiques permettent de simuler des prĂ©cipitations en accord avec les diffĂ©rentes observations disponibles

    Précipitations en Antarctique : de leur observation par télédétection à leur représentation dans un modÚle de climat global.

    No full text
    Antarctica is an immense continent made of ice. This region remains to this day one of the most unknown regions of our planet Earth. It contains nearly 90% of the world's fresh water, and in the current situation of global warming, this frozen reservoir is under serious threat. In the absence of reliable observations or efficient climate models, it is so far difficult to verify what is happening in Antarctica, and how it may evolve in the coming decades. Indeed, some studies predict significant ice melt in the west, other studies predict snow accumulation at the surface of its eastern region, mostly by precipitation events. It is, however, difficult to know if one of these two processes takes priority over the other, and which one.The CloudSat satellite is the only precipitation survey tool available on the continental scale. However, there are significant uncertainties about its measurements and the confidence that can be given to it is inevitably very low. Using precisely calibrated radar instruments deployed on the Dumont d'Urville coast station and the Princess Elisabeth continental station, we compared observations of precipitation from both surface and space. Comparison of these observations between the two datasets allowed to validate the satellite's precipitation measurements by re-evaluating an uncertainty on the measurement -- initially between 150 and 250% -- to less than 24%.This result gives more confidence to the measurements of this satellite, and from four years of continuous precipitation observation, we have developed the first three-dimensional and model-independent climatology of snowfall in Antarctica. Comparison of this dataset with theoretical precipitation rates calculated from the forced uplift of an air mass along a topographic slope shows that snowfall appears to be controlled at the first order by large-scale advection and forced uplift of wet flows against topography.We compared this dataset to the global climate model LMDz to assess its capability to represent precipitation over this polar region. Using several simulation configurations, we identified dynamic, warm and moist biases as well as biases in the moisture advections of the model. We have explored ways to reduce these biases, such as the use of atmospheric forcings (winds, temperature and specific humidity) or the sensitivity of microphysical precipitation parameters. In addition, a combination of forcing and numerical adjustment reducing the dissipation of the LMDz model on diabetic perturbations allows precipitation to be simulated in accordance with the available observations.L’Antarctique est un immense continent constituĂ© de glace. Cette rĂ©gion reste Ă  ce jour l’une des contrĂ©es les plus mĂ©connues de notre planĂšte Terre. On y retrouve prĂšs de 90% de l’eau douce globale, et dans la rĂ©alitĂ© actuelle du rĂ©chauffement climatique, ce rĂ©servoir, que l’on pensait figĂ© jusque lĂ , est menacĂ©. Cependant, faute d’observations fiables ou de modĂšles climatiques performants, il est difficile jusqu’à prĂ©sent de savoir quelle Ă©volution l’Antarctique va avoir dans les dĂ©cennies Ă  venir. En effet, si des Ă©tudes prĂ©disent une importante fonte de glace Ă  l’Ouest, d’autres Ă©tudes prĂ©disent une accumulation de neige Ă  la surface de sa rĂ©gion Est. Il est difficile de savoir lequel de ces deux processus prime sur l’autre, et dans quel sens. Le satellite CloudSat est le seul outil d’étude des prĂ©cipitations disponible Ă  l’échelle du continent. Cependant, les incertitudes sur ses mesures Ă©taient importantes. À l’aide des instruments radars prĂ©cisĂ©ment calibrĂ©s qui sont dĂ©ployĂ©s sur la station cĂŽtiĂšre de Dumont d’Urville et sur la station continentale de Princesse Elisabeth, nous avons comparĂ© des observations de prĂ©cipitations simultanĂ©ment observĂ©es depuis la surface et depuis l’espace. La comparaison de ces observations entre les deux jeux de donnĂ©es a permis de valider les mesures de prĂ©cipitations du satellite en rĂ©-Ă©valuant une incertitude sur la mesure – initialement comprise entre 150 et 250% – Ă  moins de 24%. Dans un second temps, Ă  partir des quatre annĂ©es d’observation continue de prĂ©cipitations effectuĂ©es par CloudSat, nous avons dĂ©veloppĂ© la premiĂšre climatologie tri-dimensionnelle et indĂ©pendante de tout modĂšle des chutes de neige en Antarctique. La comparaison de ce jeu de donnĂ©es avec des taux de prĂ©cipitations thĂ©oriques calculĂ©s Ă  partir du soulĂšvement forcĂ© d’une masse d’air le long d’une pente topographique montre que les chutes de neige semblent contrĂŽlĂ©es au premier ordre par l’advection Ă  large Ă©chelle et l’ascendance forcĂ©e des flux humides Ă  l’encontre de la topographie de la calotte. Nous avons comparĂ© ce jeu de donnĂ©es au modĂšle de climat global LMDz afin d’évaluer la capacitĂ© de ce dernier Ă  reprĂ©senter les prĂ©cipitations au-dessus de l’Antarctique. À l’aide de plusieurs configurations de simulations, nous avons identifiĂ© des biais dynamiques, chauds et humides ainsi que des biais dans les advections d’humiditĂ© du modĂšle. Nous avons explorĂ© des solutions pour rĂ©duire ces biais, comme l’utilisation du guidage des champs dynamiques ou la sensibilitĂ© des paramĂštres microphysiques des prĂ©cipitations. Finalement un guidage dynamique et un rĂ©glage numĂ©rique rĂ©duisant la dissipation du modĂšle LMDz sur les perturbations diabatiques permettent de simuler des prĂ©cipitations en accord avec les diffĂ©rentes observations disponibles

    Précipitations en Antarctique : de leur observation par télédétection à leur représentation dans un modÚle de climat global.

    No full text
    Antarctica is an immense continent made of ice. This region remains to this day one of the most unknown regions of our planet Earth. It contains nearly 90% of the world's fresh water, and in the current situation of global warming, this frozen reservoir is under serious threat. In the absence of reliable observations or efficient climate models, it is so far difficult to verify what is happening in Antarctica, and how it may evolve in the coming decades. Indeed, some studies predict significant ice melt in the west, other studies predict snow accumulation at the surface of its eastern region, mostly by precipitation events. It is, however, difficult to know if one of these two processes takes priority over the other, and which one.The CloudSat satellite is the only precipitation survey tool available on the continental scale. However, there are significant uncertainties about its measurements and the confidence that can be given to it is inevitably very low. Using precisely calibrated radar instruments deployed on the Dumont d'Urville coast station and the Princess Elisabeth continental station, we compared observations of precipitation from both surface and space. Comparison of these observations between the two datasets allowed to validate the satellite's precipitation measurements by re-evaluating an uncertainty on the measurement -- initially between 150 and 250% -- to less than 24%.This result gives more confidence to the measurements of this satellite, and from four years of continuous precipitation observation, we have developed the first three-dimensional and model-independent climatology of snowfall in Antarctica. Comparison of this dataset with theoretical precipitation rates calculated from the forced uplift of an air mass along a topographic slope shows that snowfall appears to be controlled at the first order by large-scale advection and forced uplift of wet flows against topography.We compared this dataset to the global climate model LMDz to assess its capability to represent precipitation over this polar region. Using several simulation configurations, we identified dynamic, warm and moist biases as well as biases in the moisture advections of the model. We have explored ways to reduce these biases, such as the use of atmospheric forcings (winds, temperature and specific humidity) or the sensitivity of microphysical precipitation parameters. In addition, a combination of forcing and numerical adjustment reducing the dissipation of the LMDz model on diabetic perturbations allows precipitation to be simulated in accordance with the available observations.L’Antarctique est un immense continent constituĂ© de glace. Cette rĂ©gion reste Ă  ce jour l’une des contrĂ©es les plus mĂ©connues de notre planĂšte Terre. On y retrouve prĂšs de 90% de l’eau douce globale, et dans la rĂ©alitĂ© actuelle du rĂ©chauffement climatique, ce rĂ©servoir, que l’on pensait figĂ© jusque lĂ , est menacĂ©. Cependant, faute d’observations fiables ou de modĂšles climatiques performants, il est difficile jusqu’à prĂ©sent de savoir quelle Ă©volution l’Antarctique va avoir dans les dĂ©cennies Ă  venir. En effet, si des Ă©tudes prĂ©disent une importante fonte de glace Ă  l’Ouest, d’autres Ă©tudes prĂ©disent une accumulation de neige Ă  la surface de sa rĂ©gion Est. Il est difficile de savoir lequel de ces deux processus prime sur l’autre, et dans quel sens. Le satellite CloudSat est le seul outil d’étude des prĂ©cipitations disponible Ă  l’échelle du continent. Cependant, les incertitudes sur ses mesures Ă©taient importantes. À l’aide des instruments radars prĂ©cisĂ©ment calibrĂ©s qui sont dĂ©ployĂ©s sur la station cĂŽtiĂšre de Dumont d’Urville et sur la station continentale de Princesse Elisabeth, nous avons comparĂ© des observations de prĂ©cipitations simultanĂ©ment observĂ©es depuis la surface et depuis l’espace. La comparaison de ces observations entre les deux jeux de donnĂ©es a permis de valider les mesures de prĂ©cipitations du satellite en rĂ©-Ă©valuant une incertitude sur la mesure – initialement comprise entre 150 et 250% – Ă  moins de 24%. Dans un second temps, Ă  partir des quatre annĂ©es d’observation continue de prĂ©cipitations effectuĂ©es par CloudSat, nous avons dĂ©veloppĂ© la premiĂšre climatologie tri-dimensionnelle et indĂ©pendante de tout modĂšle des chutes de neige en Antarctique. La comparaison de ce jeu de donnĂ©es avec des taux de prĂ©cipitations thĂ©oriques calculĂ©s Ă  partir du soulĂšvement forcĂ© d’une masse d’air le long d’une pente topographique montre que les chutes de neige semblent contrĂŽlĂ©es au premier ordre par l’advection Ă  large Ă©chelle et l’ascendance forcĂ©e des flux humides Ă  l’encontre de la topographie de la calotte. Nous avons comparĂ© ce jeu de donnĂ©es au modĂšle de climat global LMDz afin d’évaluer la capacitĂ© de ce dernier Ă  reprĂ©senter les prĂ©cipitations au-dessus de l’Antarctique. À l’aide de plusieurs configurations de simulations, nous avons identifiĂ© des biais dynamiques, chauds et humides ainsi que des biais dans les advections d’humiditĂ© du modĂšle. Nous avons explorĂ© des solutions pour rĂ©duire ces biais, comme l’utilisation du guidage des champs dynamiques ou la sensibilitĂ© des paramĂštres microphysiques des prĂ©cipitations. Finalement un guidage dynamique et un rĂ©glage numĂ©rique rĂ©duisant la dissipation du modĂšle LMDz sur les perturbations diabatiques permettent de simuler des prĂ©cipitations en accord avec les diffĂ©rentes observations disponibles

    Précipitations en Antarctique : de leur observation par télédétection à leur représentation dans un modÚle de climat global.

    No full text
    Antarctica is an immense continent made of ice. This region remains to this day one of the most unknown regions of our planet Earth. It contains nearly 90% of the world's fresh water, and in the current situation of global warming, this frozen reservoir is under serious threat. In the absence of reliable observations or efficient climate models, it is so far difficult to verify what is happening in Antarctica, and how it may evolve in the coming decades. Indeed, some studies predict significant ice melt in the west, other studies predict snow accumulation at the surface of its eastern region, mostly by precipitation events. It is, however, difficult to know if one of these two processes takes priority over the other, and which one.The CloudSat satellite is the only precipitation survey tool available on the continental scale. However, there are significant uncertainties about its measurements and the confidence that can be given to it is inevitably very low. Using precisely calibrated radar instruments deployed on the Dumont d'Urville coast station and the Princess Elisabeth continental station, we compared observations of precipitation from both surface and space. Comparison of these observations between the two datasets allowed to validate the satellite's precipitation measurements by re-evaluating an uncertainty on the measurement -- initially between 150 and 250% -- to less than 24%.This result gives more confidence to the measurements of this satellite, and from four years of continuous precipitation observation, we have developed the first three-dimensional and model-independent climatology of snowfall in Antarctica. Comparison of this dataset with theoretical precipitation rates calculated from the forced uplift of an air mass along a topographic slope shows that snowfall appears to be controlled at the first order by large-scale advection and forced uplift of wet flows against topography.We compared this dataset to the global climate model LMDz to assess its capability to represent precipitation over this polar region. Using several simulation configurations, we identified dynamic, warm and moist biases as well as biases in the moisture advections of the model. We have explored ways to reduce these biases, such as the use of atmospheric forcings (winds, temperature and specific humidity) or the sensitivity of microphysical precipitation parameters. In addition, a combination of forcing and numerical adjustment reducing the dissipation of the LMDz model on diabetic perturbations allows precipitation to be simulated in accordance with the available observations.L’Antarctique est un immense continent constituĂ© de glace. Cette rĂ©gion reste Ă  ce jour l’une des contrĂ©es les plus mĂ©connues de notre planĂšte Terre. On y retrouve prĂšs de 90% de l’eau douce globale, et dans la rĂ©alitĂ© actuelle du rĂ©chauffement climatique, ce rĂ©servoir, que l’on pensait figĂ© jusque lĂ , est menacĂ©. Cependant, faute d’observations fiables ou de modĂšles climatiques performants, il est difficile jusqu’à prĂ©sent de savoir quelle Ă©volution l’Antarctique va avoir dans les dĂ©cennies Ă  venir. En effet, si des Ă©tudes prĂ©disent une importante fonte de glace Ă  l’Ouest, d’autres Ă©tudes prĂ©disent une accumulation de neige Ă  la surface de sa rĂ©gion Est. Il est difficile de savoir lequel de ces deux processus prime sur l’autre, et dans quel sens. Le satellite CloudSat est le seul outil d’étude des prĂ©cipitations disponible Ă  l’échelle du continent. Cependant, les incertitudes sur ses mesures Ă©taient importantes. À l’aide des instruments radars prĂ©cisĂ©ment calibrĂ©s qui sont dĂ©ployĂ©s sur la station cĂŽtiĂšre de Dumont d’Urville et sur la station continentale de Princesse Elisabeth, nous avons comparĂ© des observations de prĂ©cipitations simultanĂ©ment observĂ©es depuis la surface et depuis l’espace. La comparaison de ces observations entre les deux jeux de donnĂ©es a permis de valider les mesures de prĂ©cipitations du satellite en rĂ©-Ă©valuant une incertitude sur la mesure – initialement comprise entre 150 et 250% – Ă  moins de 24%. Dans un second temps, Ă  partir des quatre annĂ©es d’observation continue de prĂ©cipitations effectuĂ©es par CloudSat, nous avons dĂ©veloppĂ© la premiĂšre climatologie tri-dimensionnelle et indĂ©pendante de tout modĂšle des chutes de neige en Antarctique. La comparaison de ce jeu de donnĂ©es avec des taux de prĂ©cipitations thĂ©oriques calculĂ©s Ă  partir du soulĂšvement forcĂ© d’une masse d’air le long d’une pente topographique montre que les chutes de neige semblent contrĂŽlĂ©es au premier ordre par l’advection Ă  large Ă©chelle et l’ascendance forcĂ©e des flux humides Ă  l’encontre de la topographie de la calotte. Nous avons comparĂ© ce jeu de donnĂ©es au modĂšle de climat global LMDz afin d’évaluer la capacitĂ© de ce dernier Ă  reprĂ©senter les prĂ©cipitations au-dessus de l’Antarctique. À l’aide de plusieurs configurations de simulations, nous avons identifiĂ© des biais dynamiques, chauds et humides ainsi que des biais dans les advections d’humiditĂ© du modĂšle. Nous avons explorĂ© des solutions pour rĂ©duire ces biais, comme l’utilisation du guidage des champs dynamiques ou la sensibilitĂ© des paramĂštres microphysiques des prĂ©cipitations. Finalement un guidage dynamique et un rĂ©glage numĂ©rique rĂ©duisant la dissipation du modĂšle LMDz sur les perturbations diabatiques permettent de simuler des prĂ©cipitations en accord avec les diffĂ©rentes observations disponibles

    Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations

    No full text
    International audienceCMIP5, CMIP6, and ERA5 Antarctic precipitation is evaluated against CloudSat data. At continental and regional scales, ERA5 and the median CMIP models are biased high, with insignificant improvement from CMIP5 to CMIP6. However, there are fewer positive outliers in CMIP6. AMIP configurations perform better than the coupled ones, and, surprisingly, relative errors in areas of complex topography are higher (up to 50 %) in the five higher-resolution models. The seasonal cycle is reproduced well by the median of the CMIP models, but not by ERA5. Progress from CMIP5 to CMIP6 being limited, there is still room for improvement

    Backscatter modelling and inversion from Cassini/SAR data: Implications for Titan’s sand seas properties and climatic conditions

    No full text
    Sand seas on Titan may reflect the present and past climatic conditions. Understanding the morphodynamics and physicochemical properties of Titan’s dunes is therefore essential for a better comprehension of the climatic and geological history of the largest Saturn’s moon. We derived quantitatively surface properties (texture, composition) from the modelling of microwave backscattered signal and Monte Carlo inversion of despeckled Cassini/SAR data over the equatorial sand seas. We show that dunes and inter-dunes have significantly different physical properties. Absorption is more efficient in the dunes compared to the inter-dunes. The inter-dunes are smoother with an higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs, suggesting the presence of a shallow layer of sediment in between the dunes. Additionally potential secondary bedforms may have been detected. Implications for dune morphodynamics, sediment inventory and climatic conditions occurring on Titan will be discussed

    Evaluation of coastal Antarctic precipitation in MAR3.9 regional and LMDz6 global atmospheric model with ground-based radar observations

    No full text
    In the current context of climate change in the poles, one of the objectives of the APRES3 (Antarctic Precipitation Remote Sensing from Surface and Space) project is to characterize the vertical structure of precipitation in order to better simulate it. Nowadays, the precipitation simulated by models in Antarctica is very widespread and overestimated the data. Sensitivity studies have been conducted using two models and compared to the observations obtained at the Dumont d'Urville coast station, obtained by a Micro Rain Radar (MRR). The MAR meso-scale model specifically developed for the polar regions and the LMDz/IPSL general circulation model, with zoomed configuration over Dumont d'Urville, have been considered for this study. These models being different in resolution and physical configuration, performing an inter-comparison required numerical, dynamic and physical adjustments in LMDz. A sensitivity study was conducted on the physical and numerical parameters of the LMDz model and on the resolution of the MAR with the aim of estimating their contribution to the precipitation simulation. Sensitivity tests with MAR revealed that this model is well adjusted for precipitation modeling in polar climates, this confirming that this model is a reference in polar climate modeling. Regarding LMDz, sensitivity experiments revealed that modifications in the sedimentation and sublimation parameters do not significantly impact precipitation rate. However, dissipation of the LMDz model, which is a numerical process that dissipates spatially excessive energy and keeps the model stable, impacts precipitation indirectly but very strongly. A suitable adjustment of the dissipation reduces significantly precipitation over Antarctic peripheral area, thus providing a simulated profile in better agreement with the MRR observations

    CloudSat-inferred vertical structure of precipitation over the Antarctic continent

    No full text
    Current global warming is causing significant changes in snowfall in polar regions, directly impacting the mass balance of the ice caps. The only water supply in Antarctica, precipitation, is poorly estimated from surface measurements. The onboard cloud-profiling radar of the CloudSat satellite provided the first real opportunity to estimate precipitation at continental scale. Based on CloudSat observations, we propose to explore the vertical structure of precipitation in Antarctica over the 2007-2010 period. A first division of this dataset following a topographical approach (continent versus peripheral regions, with a 2250m topographical criterion) shows a high precipitation rate (275mm/yr at 1200meters above ground level) with low relative seasonal variation (+/-11%) over the peripheral areas. Over the plateau, the precipitation rate is low (34mm/yr at 1200m.a.g.l.) with a much larger relative seasonal variation (+/-143%). A second study that follows a geographical division highlights the average vertical structure of precipitation and temperature depending on the regions and their interactions with topography. In particular, over ice-shelves, we see a strong dependence of the distribution of precipitation on the sea-ice coverage. Finally, the relationship between precipitation and temperature is analyzed and compared with a simple analytical relationship. This study highlights that precipitation is largely dependent on the advection of air masses along the topographic slopes with an average vertical wind of 0.02m/s. This provides new diagnostics to evaluate climate models with a three-dimensional approach of the atmospheric structure of precipitation

    Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data

    No full text
    International audienceSince their arrival at comet 67P in August 2014, a number of instruments onboard Rosetta’s main spacecraft and Philae lander have been observing the surface of the nucleus and revealed details of amazing surficial structures (hundreds of meters deep pits and cliffs, surface roughness of the order of a couple of meters in size, non-continuous apparent layers on both lobes of the comet). After two years of observations, the activity of the comet has also been better constrained, while the origin of sporadic jet activities remains debated. This surficial information is complemented by relevant measurements assessing the nucleus internal structure that have been collected by the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment in order to constrain the nucleus formation and evolution.The CONSERT experiment is a bistatic radar with receivers and transmitters on-board both Rosetta’s main spacecraft and the Philae lander. The instrument transmits electromagnetic waves at 90 MHz (10 MHz bandwidth) between Philae and Rosetta. The signal propagated through the small lobe of 67P over distances ranging from approximately 200 to 800 meters depending on the spacecraft location and probed a maximum depth of about one hundred meters in the vicinity of the final landing site Abydos. The CONSERT data have been used to obtain an estimate of the permittivity mean value. Thanks to the 10 MHz frequency bandwidth of the signal used by the instrument, a spatial resolution around 10m is obtained inside the sounded volume of the nucleus.In this work, we analyze the effect of internal heterogeneities of 67P on the CONSERT data by simulating the propagation of the signal through a fractal model of the comet interior. We considered for the simulations a range of realistic permittivity values and characteristic sizes of the material heterogeneities. The different parameters values used have an impact on the width of the signal propagating through the modeled nucleus. Comparison with the values measured by CONSERT will allow us to determine the possible permittivity variations and heterogeneities size compatible with 67P internal structure
    corecore