11 research outputs found

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Modeling and simulation of a blood pump for the development of a left ventricular assist system controller

    Get PDF
    summary:A mathematical model describing the pressure-volume relationship of the Novacor left ventricular assist system (LVAS) was developed. The model consisted of lumped resistance, capacitance, and inductance elements with one time-varying capacitor to simulate the cyclical pressure generation of the system. The ejection and filling portions of the pump cycle were modeled with two separate functions. The corresponding model parameters were estimated by least squares fit to experimental data obtained in the laboratory. The model performed well at simulating pump pressure of operation throughout the full cycle. Computer simulation of the pump with a cardiovascular model demonstrated the interaction between the LVAS and the cardiovascular system. This model can be used to incorporate on-line cardiovascular parameter estimation and to design a new controller for the LVAS
    corecore