432 research outputs found

    Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I

    Get PDF
    Glutaric acidemia type I (GA-I) is an inherited disorder of lysine and tryptophan metabolism presenting with striatal lesions anatomically and symptomatically similar to Huntington disease. Affected children commonly suffer acute brain injury in the context of a catabolic state associated with nonspecific illness. The mechanisms underlying injury and age-dependent susceptibility have been unknown, and lack of a diagnostic marker heralding brain injury has impeded intervention efforts. Using a mouse model of GA-I, we show that pathologic events began in the neuronal compartment while enhanced lysine accumulation in the immature brain allowed increased glutaric acid production resulting in age-dependent injury. Glutamate and GABA depletion correlated with brain glutaric acid accumulation and could be monitored in vivo by proton nuclear magnetic resonance (1H NMR) spectroscopy as a diagnostic marker. Blocking brain lysine uptake reduced glutaric acid levels and brain injury. These findings provide what we believe are new monitoring and treatment strategies that may translate for use in human GA-I

    Induced pluripotent stem cells (iPSC) created from skin fibroblasts of patients with Prader-Willi syndrome (PWS) retain the molecular signature of PWS

    Get PDF
    AbstractPrader-Willi syndrome (PWS) is a syndromic obesity caused by loss of paternal gene expression in an imprinted interval on 15q11.2-q13. Induced pluripotent stem cells were generated from skin cells of three large deletion PWS patients and one unique microdeletion PWS patient. We found that genes within the PWS region, including SNRPN and NDN, showed persistence of DNA methylation after iPSC reprogramming and differentiation to neurons. Genes within the PWS minimum critical deletion region remain silenced in both PWS large deletion and microdeletion iPSC following reprogramming. PWS iPSC and their relevant differentiated cell types could provide in vitro models of PWS

    Sexual Dimorphic Regulation of Body Weight Dynamics and Adipose Tissue Lipolysis

    Get PDF
    BACKGROUND: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism. Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-dynamics (gain-loss-regain). RESEARCH DESIGN: Obesity was induced in C57BL/6J male (m) and female (f) mice by 15 weeks high-fat diet (HFD) feeding. Subsequently BW was reduced (-20%) by caloric restriction (CR) followed by adaptive feeding, and a regain-phase. Measurement of EE, body composition, blood/organ sampling were performed after each feeding period. Lipolysis was analyzed ex-vivo in gonadal AT. RESULTS: Male mice exhibited accelerated BW-gain compared to females (relative BW-gain m:140.5±3.2%; f:103.7±6.5%; p<0.001). In consonance, lean mass-specific EE was significantly higher in females compared to males during BW-gain. Under CR female mice reached their target-BW significantly faster than male mice (m:12.2 days; f:7.6 days; p<0.001) accompanied by a sustained sex-difference in EE. In addition, female mice predominantly downsized gonadal AT whereas the relation between gonadal and total body fat was not altered in males. Accordingly, only females exhibited an increased rate of forskolin-stimulated lipolysis in AT associated with significantly higher glycerol concentrations, lower RER-values, and increased AT expression of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Analysis of AT lipolysis in estrogen receptor alpha (ERα)-deficient mice revealed a reduced lipolytic rate in the absence of ERα exclusively in females. Finally, re-feeding caused BW-regain faster in males than in females. CONCLUSION: The present study shows sex-specific dynamics during BW-gain-loss-regain. Female mice responded to CR with an increase in lipolytic activity, and augmented lipid-oxidation leading to more efficient weight loss. These processes likely involve ERα-dependent signaling in AT and sexual dimorphic regulation of genes involved in lipid metabolism

    Adipocyte browning and higher mitochondrial function in peri-adrenal but not subcutaneous fat in pheochromocytoma

    Get PDF
    Context: Patients with pheochromocytoma (pheo) show presence of multilocular adipocytes that express uncoupling protein (UCP) 1 within periadrenal (pADR) and omental (OME) fat depots. It has been hypothesized that this is due to adrenergic stimulation by catecholamines produced by the pheo tumors. Objective: To characterize the prevalence and respiratory activity of brown-like adipocytes within pADR, OME and subcutaneous (SC) fat depots in human adult pheo patients. Design: This was an observational cohort study. Setting: University hospital. Patients: We studied 46 patients who underwent surgery for benign adrenal tumors (21pheos and 25 controls with adrenocortical adenomas). Main outcome measure: We characterized adipocyte browning in pADR, SC, and OME fat depots for histological and immunohistological features, mitochondrial respiration rate, and gene expression. We also determined circulating levels of catecholamines and other browning-related hormones. Results: 11 of 21 pheo pADR adipose samples, but only 1 of 25 pADR samples from control patients, exhibited multilocular adipocytes. The pADR browning phenotype was associated with higher plasma catecholamines and raised UCP1. Mitochondria from multilocular pADR fat of pheo patients exhibited increased rates of coupled and uncoupled respiration. Global gene expression analysis in pADR fat revealed enrichment in β-oxidation genes in pheo patients with multilocular adipocytes. No SC or OME fat depots exhibited aspects of browning. Conclusion: Browning of the pADR depot occurred in half of pheo patients and was associated with increased catecholamines and mitochondrial activity. No browning was detected in other fat depots, suggesting that other factors are required to promote browning in these depots

    Influences of obese (ob/ob) and diabetes (db/db) genotype mutations on lumber vertebral radiological and morphometric indices: Skeletal deformation associated with dysregulated systemic glucometabolism

    Get PDF
    BACKGROUND: Both diabetes and obesity syndromes are recognized to promote lumbar vertebral instability, premature osteodegeneration, exacerbate progressive osteoporosis and increase the propensity towards vertebral degeneration, instability and deformation in humans. METHODS: The influences of single-gene missense mutations, expressing either diabetes (db/db) or obese (ob/ob) metabolic syndromes on vertebral maturation and development in C57BL/KsJ mice were evaluated by radiological and macro-morphometric analysis of the resulting variances in osteodevelopment indices relative to control parameters between 8 and 16 weeks of age (syndrome onset @ 4 weeks), and the influences of low-dose 17-B-estradiol therapy on vertebral growth expression evaluated. RESULTS: Associated with the indicative genotypic obesity and hyper-glycemic/-insulinemic states, both db/db and ob/ob mutants demonstrated a significant (P ≤ 0.05) elongation of total lumbar vertebrae column (VC) regional length, and individual lumbar vertebrae (LV1-5) lengths, relative to control VC and LV parameters. In contrast, LV1-5 width indices were suppressed in db/db and ob/ob mutants relative to control LV growth rates. Between 8 and 16 weeks of age, the suppressed LV1-5 width indices were sustained in both genotype mutant groups relative to control osteomaturation rates. The severity of LV1-5 width osteosuppression correlated with the severe systemic hyperglycemic and hypertriglyceridemic conditions sustained in ob/ob and db/db mutants. Low-dose 17-B-estradiol therapy (E2-HRx: 1.0 ug/ 0.1 ml oil s.c/3.5 days), initiated at 4 weeks of age (i.e., initial onset phase of db/db and ob/ob expressions) re-established control LV 1–5 width indices without influencing VC or LV lengths in db/db groups. CONCLUSION: These data demonstrate that the abnormal systemic endometabolic states associated with the expression of db/db and ob/ob genomutation syndromes suppress LV 1–5 width osteomaturation rates, but enhanced development related VC and LV length expression, relative to control indices in a progressive manner similar to recognized human metabolic syndrome conditions. Therapeutic E2 modulation of the hyperglycemic component of diabetes-obesity syndrome protected the regional LV from the mutation-induced osteopenic width-growth suppression. These data suggest that these genotype mutation models may prove valuable for the evaluation of therapeutic methodologies suitable for the treatment of human diabetes- or obesity-influenced, LV degeneration-linked human conditions, which demonstrate amelioration from conventional replacement therapies following diagnosis of systemic syndrome-induced LV osteomaturation-associated deformations

    The impact of radiotherapy in the treatment of desmoid tumours. An international survey of 110 patients. A study of the Rare Cancer Network

    Get PDF
    PURPOSE: A multi-centre study to assess the value of combined surgical resection and radiotherapy for the treatment of desmoid tumours. PATIENTS AND METHODS: One hundred and ten patients from several European countries qualified for this study. Pathology slides of all patients were reviewed by an independent pathologist. Sixty-eight patients received post-operative radiotherapy and 42 surgery only. Median follow-up was 6 years (1 to 44). The progression-free survival time (PFS) and prognostic factors were analysed. RESULTS: The combined treatment with radiotherapy showed a significantly longer progression-free survival than surgical resection alone (p smaller than 0.001). Extremities could be preserved in all patients treated with combined surgery and radiotherapy for tumours located in the limb, whereas amputation was necessary for 23% of patients treated with surgery alone. A comparison of PFS for tumour locations proved the abdominal wall to be a positive prognostic factor and a localization in the extremities to be a negative prognostic factor. Additional irradiation, a fraction size larger than or equal to 2 Gy and a total dose larger than 50 Gy to the tumour were found to be positive prognostic factors with a significantly lower risk for a recurrence in the univariate analysis. This analysis revealed radiotherapy at recurrence as a significantly worse prognostic factor compared with adjuvant radiotherapy. The addition of radiotherapy to the treatment concept was a positive prognostic factor in the multivariate analysis. CONCLUSION: Postoperative radiotherapy significantly improved the PFS compared to surgery alone. Therefore it should always be considered after a non-radical tumour resection and should be given preferably in an adjuvant setting. It is effective in limb preservation and for preserving the function of joints in situations where surgery alone would result in deficits, which is especially important in young patients

    Neonatal Astrocyte Damage Is Sufficient to Trigger Progressive Striatal Degeneration in a Rat Model of Glutaric Acidemia-I

    Get PDF
    BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I
    • …
    corecore